On the ratio of extremal eigenvalues of $\beta$-Laguerre ensembles
Authors:
Denise Uwamariya and Xiangfeng Yang
Journal:
Theor. Probability and Math. Statist. 111 (2024), 167-179
MSC (2020):
Primary 60B20, 60F10, 15A12
DOI:
https://doi.org/10.1090/tpms/1221
Published electronically:
October 30, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Classical $\beta$-Laguerre ensembles consist of three special matrix models taking the form $\mathbf {X}\mathbf {X}^T$ with $\mathbf {X}$ denoting a random matrix having i.i.d. entries being real ($\beta =1$), complex ($\beta =2$) or quaternion ($\beta =4$) normal distribution. It had been actually believed that no other choice of $\beta >0$ (besides $1,2$ and $4$) would correspond to a matrix model $\mathbf {X}_\beta \mathbf {X}_\beta ^T$ which can be constructed with entries from a classical distribution until the work done by Dumitriu and Edelman in 2002. Since then the spectral properties of general $\beta$-Laguerre ensembles have been extensively studied dealing with both the bulk case (involving all the eigenvalues) and the extremal case (addressing the (first few) largest and smallest eigenvalues). However, the ratio of the extremal eigenvalues (equivalently the condition number of $\mathbf {X}_\beta$) has not been well explored in the literature. In this paper, we study such ratio in terms of large deviations.
References
- Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. MR 2760897
- T. H. Baker, P. J. Forrester, and P. A. Pearce, Random matrix ensembles with an effective extensive external charge, J. Phys. A 31 (1998), no. 29, 6087–6101. MR 1637735, DOI 10.1088/0305-4470/31/29/002
- P. Bianchi, M. Debbah, M. Maida, and J. Najim, Performance of statistical tests for single-source detection using random matrix theory, IEEE Trans. Inform. Theory 57 (2011), no. 4, 2400–2419. MR 2809098, DOI 10.1109/TIT.2011.2111710
- Lei Chen and Shaochen Wang, Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles, Random Matrices Theory Appl. 9 (2020), no. 2, 2050003, 20. MR 4085373, DOI 10.1142/S2010326320500033
- Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Stochastic Modelling and Applied Probability, vol. 38, Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition. MR 2571413, DOI 10.1007/978-3-642-03311-7
- Ioana Dumitriu, Eigenvalue statistics for beta-ensembles, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2717094
- Ioana Dumitriu and Alan Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (2002), no. 11, 5830–5847. MR 1936554, DOI 10.1063/1.1507823
- A. K. Gupta and D. K. Nagar, Matrix variate distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 104, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR 1738933
- Alan T. James, Distributions of matrix variates and latent roots derived from normal samples, Ann. Math. Statist. 35 (1964), 475–501. MR 181057, DOI 10.1214/aoms/1177703550
- Tiefeng Jiang and Danning Li, Approximation of rectangular beta-Laguerre ensembles and large deviations, J. Theoret. Probab. 28 (2015), no. 3, 804–847. MR 3413957, DOI 10.1007/s10959-013-0519-7
- Kurt Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), no. 2, 437–476. MR 1737991, DOI 10.1007/s002200050027
- Iain M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist. 29 (2001), no. 2, 295–327. MR 1863961, DOI 10.1214/aos/1009210544
- Michel Ledoux and Brian Rider, Small deviations for beta ensembles, Electron. J. Probab. 15 (2010), no. 41, 1319–1343. MR 2678393, DOI 10.1214/EJP.v15-798
- Dénes Petz and Fumio Hiai, Logarithmic energy as an entropy functional, Advances in differential equations and mathematical physics (Atlanta, GA, 1997) Contemp. Math., vol. 217, Amer. Math. Soc., Providence, RI, 1998, pp. 205–221. MR 1606719, DOI 10.1090/conm/217/02991
- Mark Rudelson, Invertibility of random matrices: norm of the inverse, Ann. of Math. (2) 168 (2008), no. 2, 575–600. MR 2434885, DOI 10.4007/annals.2008.168.575
- José A. Ramírez, Brian Rider, and Bálint Virág, Beta ensembles, stochastic Airy spectrum, and a diffusion, J. Amer. Math. Soc. 24 (2011), no. 4, 919–944. MR 2813333, DOI 10.1090/S0894-0347-2011-00703-0
- Lloyd N. Trefethen and David Bau III, Numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1444820, DOI 10.1137/1.9780898719574
References
- G. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cambridge University Press, Cambridge, 2010. MR 2760897
- T. Baker, P. Forrester, and P. Pearce, Random matrix ensembles with an effective extensive external charge, J. Phys. A 31 (1998), 6087–6101. MR 1637735
- P. Bianchi, M. Debbah, M. Maida, and J. Najim, Performance of statistical tests for single-source detection using random matrix theory, IEEE Trans. Inform. Theory 57 (2011), 2400–2419. MR 2809098
- L. Chen and S. Wang, Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles, Random Matrices Theory Appl. 9 (2020), no. 2, 2050003. MR 4085373
- A. Dembo and O. Zeitouni, Large deviations techniques and applications, Corrected reprint of the second (1998) edition, Springer-Verlag, Berlin, 2010. MR 2571413
- I. Dumitriu, Eigenvalue statistics for beta-ensembles, Ph.D. Thesis, Massachusetts Institute of Technology, 2003. MR 2717094
- I. Dumitriu and A. Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (2002), 5830–5847. MR 1936554
- A. Gupta and D. Nagar, Matrix variate distributions, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1738933
- A. James Distributions of matrix variates and latent roots derived from normal samples, Ann. Math. Statist. 35 (1964), 475–501. MR 181057
- T. Jiang and D. Li, Approximation of rectangular beta-Laguerre ensembles and large deviations, J. Theoret. Probab. 28 (2015), 804–847. MR 3413957
- K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), 437–476. MR 1737991
- I. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist. 29 (2001), 295–327. MR 1863961
- M. Ledoux and B. Rider, Small deviations for beta ensembles, Electron. J. Probab. 15 (2010), 1319–1343. MR 2678393
- D. Petz and F. Hiai, Logarithmic energy as an entropy functional, Advances in differential equations and mathematical physics (1998), 205–221. MR 1606719
- M. Rudelson, Invertibility of random matrices: norm of the inverse, Ann. of Math. 168 (2008), 575–600. MR 2434885
- J. Ramírez, B. Rider, and B. Virág, Beta ensembles, stochastic Airy spectrum, and a diffusion, J. Amer. Math. Soc. 24 (2011), 919–944. MR 2813333
- L. Trefethen and D. Bau, Numerical linear algebra. SIAM, Philadelphia, PA, 1997. MR 1444820
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60B20,
60F10,
15A12
Retrieve articles in all journals
with MSC (2020):
60B20,
60F10,
15A12
Additional Information
Denise Uwamariya
Affiliation:
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Email:
denise.uwamariya@liu.se
Xiangfeng Yang
Affiliation:
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Email:
xiangfeng.yang@liu.se
Keywords:
$\beta$-Laguerre ensembles,
extremal eigenvalues,
large deviations
Received by editor(s):
October 19, 2023
Accepted for publication:
March 11, 2024
Published electronically:
October 30, 2024
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv