On Lamperti transformation and AR$(1)$ type characterisations of discrete random fields
Authors:
Marko Voutilainen, Lauri Viitasaari and Pauliina Ilmonen
Journal:
Theor. Probability and Math. Statist. 111 (2024), 181-197
MSC (2020):
Primary 60G60, 60G10, 60G18
DOI:
https://doi.org/10.1090/tpms/1222
Published electronically:
October 30, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this article we characterise discrete time stationary fields by difference equations involving stationary increment fields and self-similar fields. This gives connections between stationary fields, stationary increment fields and, through Lamperti transformation, self-similar fields. Our contribution is a natural generalisation of recently proved results covering the case of stationary processes.
References
- Hermine Biermé, Mark M. Meerschaert, and Hans-Peter Scheffler, Operator scaling stable random fields, Stochastic Process. Appl. 117 (2007), no. 3, 312–332. MR 2290879, DOI 10.1016/j.spa.2006.07.004
- Patrick Cheridito, Hideyuki Kawaguchi, and Makoto Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8 (2003), no. 3, 14. MR 1961165, DOI 10.1214/EJP.v8-125
- Marianne Clausel, Gaussian fields satisfying simultaneous operator scaling relations, Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2010, pp. 327–341. MR 2743003, DOI 10.1007/978-0-8176-4888-6_{2}1
- Paul Embrechts and Makoto Maejima, Selfsimilar processes, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2002. MR 1920153
- Marc G. Genton, Olivier Perrin, and Murad S. Taqqu, Self-similarity and Lamperti transformation for random fields, Stoch. Models 23 (2007), no. 3, 397–411. MR 2341075, DOI 10.1080/15326340701471018
- Yaozhong Hu and David Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statist. Probab. Lett. 80 (2010), no. 11-12, 1030–1038. MR 2638974, DOI 10.1016/j.spl.2010.02.018
- Terhi Kaarakka and Paavo Salminen, On fractional Ornstein-Uhlenbeck processes, Commun. Stoch. Anal. 5 (2011), no. 1, 121–133. MR 2808539, DOI 10.31390/cosa.5.1.08
- John Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62–78. MR 138128, DOI 10.1090/S0002-9947-1962-0138128-7
- Vitalii Makogin and Yuliya Mishura, Example of a Gaussian self-similar field with stationary rectangular increments that is not a fractional Brownian sheet, Stoch. Anal. Appl. 33 (2015), no. 3, 413–428. MR 3339311, DOI 10.1080/07362994.2014.1002042
- Vitalii Makogin and Yuliya Mishura, Gaussian multi-self-similar random fields with distinct stationary properties of their rectangular increments, Stoch. Models 35 (2019), no. 4, 391–428. MR 4026763, DOI 10.1080/15326349.2019.1610664
- Gennady Samorodnitsky and Murad S. Taqqu, Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall, New York, 1994. Stochastic models with infinite variance. MR 1280932
- Tommi Sottinen and Lauri Viitasaari, Parameter estimation for the Langevin equation with stationary-increment Gaussian noise, Stat. Inference Stoch. Process. 21 (2018), no. 3, 569–601. MR 3846993, DOI 10.1007/s11203-017-9156-6
- Lauri Viitasaari, Representation of stationary and stationary increment processes via Langevin equation and self-similar processes, Statist. Probab. Lett. 115 (2016), 45–53. MR 3498367, DOI 10.1016/j.spl.2016.03.020
- M. Voutilainen, Modeling and estimation of multivariate discrete and continuous time stationary processes, Front. Appl. Math. Stat. 6 (2020).
- Marko Voutilainen, Lauri Viitasaari, and Pauliina Ilmonen, On model fitting and estimation of strictly stationary processes, Mod. Stoch. Theory Appl. 4 (2017), no. 4, 381–406. MR 3739015, DOI 10.15559/17-vmsta91
- Marko Voutilainen, Lauri Viitasaari, Pauliina Ilmonen, Soledad Torres, and Ciprian Tudor, Vector-valued generalized Ornstein-Uhlenbeck processes: properties and parameter estimation, Scand. J. Stat. 49 (2022), no. 3, 992–1022. MR 4471277, DOI 10.1111/sjos.12552
References
- H. Biermé, M. M. Meerschaert, and H.-P. Scheffler, Operator scaling stable random fields, Stoch. Process. Appl. 117 (2007), no. 3, 312–332. MR 2290879
- P. Cheridito, H. Kawaguchi, and M. Maejima, Fractional Ornstein–Uhlenbeck processes, Electron. J. Probab. 8 (2003), no. 3, 1–14. MR 1961165
- M. Clausel, Gaussian fields satisfying simultaneous operator scaling relations, Recent Developments in Fractals and Related Fields, Springer, 2010, pp. 327–341. MR 2743003
- P. Embrechts, Selfsimilar processes, Princeton Series in Applied Mathematics, Princeton University Press, 2002. MR 1920153
- M. G. Genton, O. Perrin, and M. S. Taqqu, Self-similarity and Lamperti transformation for random fields, Stoch. Models 23 (2007), no. 3, 397–411. MR 2341075
- Y. Hu and D. Nualart, Parameter estimation for fractional Ornstein–Uhlenbeck processes, Stat. Probab. Lett. 80 (2010), no. 11–12, 1030–1038. MR 2638974
- T. Kaarakka and P. Salminen, Fractional Ornstein–Uhlenbeck processes, Commun. Stoch. Anal. 5 (2011), no. 1, 121–133. MR 2808539
- J. W. Lamperti, Semi-stable processes, Trans. Amer. Math. Soc. 104 (1962), 62–78. MR 138128
- V. Makogin and Y. Mishura, Example of a Gaussian self-similar field with stationary rectangular increments that is not a fractional Brownian sheet, Stoch. Anal. Appl. 33 (2015), no. 3, 413–428. MR 3339311
- V. Makogin and Y. Mishura, Gaussian multi-self-similar random fields with distinct stationary properties of their rectangular increments, Stoch. Models 35 (2019), no. 4, 391–428. MR 4026763
- G. Samorodnitsky, M. S. Taqqu, and R. W. Linde, Stable non-Gaussian random processes: stochastic models with infinite variance, Bull. London Math. Soc. 28 (1996), no. 134, 554–555. MR 1280932
- T. Sottinen and L. Viitasaari, Parameter estimation for the Langevin equation with stationary-increment Gaussian noise, Stat. Inference Stoch. Process. 21 (2018), no. 3, 569–601. MR 3846993
- L. Viitasaari, Representation of stationary and stationary increment processes via Langevin equation and self-similar processes, Stat. Prob. Lett. 115 (2016), 45–53. MR 3498367
- M. Voutilainen, Modeling and estimation of multivariate discrete and continuous time stationary processes, Front. Appl. Math. Stat. 6 (2020).
- M. Voutilainen, L. Viitasaari, and P. Ilmonen, On model fitting and estimation of strictly stationary processes, Mod. Stoch.: Theory Appl. 4 (2017), no. 4, 381–406. MR 3739015
- M. Voutilainen, L. Viitasaari, P. Ilmonen, S. Torres, and C. Tudor, Vector-valued generalized Ornstein–Uhlenbeck processes: Properties and parameter estimation, Scand. J. Stat. 49 (2022), no. 3, 992–1022. MR 4471277
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60G60,
60G10,
60G18
Retrieve articles in all journals
with MSC (2020):
60G60,
60G10,
60G18
Additional Information
Marko Voutilainen
Affiliation:
Turku School of Economics, Department of Accounting and Finance, FI-20014 University of Turku, Finland
Email:
mtvout@utu.fi
Lauri Viitasaari
Affiliation:
Uppsala University, Department of Mathematics, Box 480, 751 06 Uppsala, Sweden
Address at time of publication:
Aalto University, Department of Information and Service Management, P.O. Box 21210, 00076 Aalto, Finland
Email:
lauri.viitasaari@aalto.fi
Pauliina Ilmonen
Affiliation:
Aalto University, Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-00076 Aalto, Finland
Email:
pauliina.ilmonen@aalto.fi
Keywords:
Random fields,
stationary fields,
self-similar fields,
Lamperti transformation,
fractional Ornstein–Uhlenbeck fields
Received by editor(s):
April 21, 2023
Accepted for publication:
September 7, 2023
Published electronically:
October 30, 2024
Additional Notes:
Academy of Finland, decision number 346308
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv