An invariant related to the existence of conformally compact Einstein fillings
Authors:
Matthew J. Gursky, Qing Han and Stephan Stolz
Journal:
Trans. Amer. Math. Soc.
MSC (2020):
Primary 53Z05
DOI:
https://doi.org/10.1090/tran/8308
Published electronically:
March 2, 2021
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We define an invariant for compact spin manifolds of dimension
equipped with a metric
of positive Yamabe invariant on its boundary. The vanishing of this invariant is a necessary condition for the conformal class of
to be the conformal infinity of a conformally compact Einstein metric on
.
- [1] Michael T. Anderson, Geometric aspects of the AdS/CFT correspondence, AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, 2005, pp. 1–31. MR 2160865, https://doi.org/10.4171/013-1/1
- [2] Michael T. Anderson, Einstein metrics with prescribed conformal infinity on 4-manifolds, Geom. Funct. Anal. 18 (2008), no. 2, 305–366. MR 2421542, https://doi.org/10.1007/s00039-008-0668-5
- [3] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, https://doi.org/10.1017/S0305004100049410
- [4] Olivier Biquard, Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000), vi+109 (French, with English and French summaries). MR 1760319
- [5] Olivier Biquard, Métriques autoduales sur la boule, Invent. Math. 148 (2002), no. 3, 545–607 (French, with English summary). MR 1908060, https://doi.org/10.1007/s002220100203
- [6] Olivier Biquard, Désingularisation de métriques d’Einstein. II, Invent. Math. 204 (2016), no. 2, 473–504 (French, with English summary). MR 3489703, https://doi.org/10.1007/s00222-015-0619-3
- [7] Bernhelm Booß-Bavnbek and Krzysztof P. Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233386
- [8] David M. J. Calderbank and Michael A. Singer, Einstein metrics and complex singularities, Invent. Math. 156 (2004), no. 2, 405–443. MR 2052611, https://doi.org/10.1007/s00222-003-0344-1
- [9] Sun-Yung A. Chang, Jie Qing, and Paul Yang, On the topology of conformally compact Einstein 4-manifolds, Noncompact problems at the intersection of geometry, analysis, and topology, Contemp. Math., vol. 350, Amer. Math. Soc., Providence, RI, 2004, pp. 49–61. MR 2082390, https://doi.org/10.1090/conm/350/06337
- [10] Piotr T. Chruściel and Erwann Delay, Non-singular, vacuum, stationary space-times with a negative cosmological constant, Ann. Henri Poincaré 8 (2007), no. 2, 219–239. MR 2314449, https://doi.org/10.1007/s00023-006-0306-4
- [11] Piotr T. Chruściel and Erwann Delay, Non-singular space-times with a negative cosmological constant: II. Static solutions of the Einstein-Maxwell equations, Lett. Math. Phys. 107 (2017), no. 8, 1391–1407. MR 3669238, https://doi.org/10.1007/s11005-017-0955-x
- [12] Piotr T. Chruściel, Erwann Delay, John M. Lee, and Dale N. Skinner, Boundary regularity of conformally compact Einstein metrics, J. Differential Geom. 69 (2005), no. 1, 111–136. MR 2169584
- [13] Xianzhe Dai and Guofang Wei, Hitchin-Thorpe inequality for noncompact Einstein 4-manifolds, Adv. Math. 214 (2007), no. 2, 551–570. MR 2349712, https://doi.org/10.1016/j.aim.2007.02.010
- [14] Tohru Eguchi, Peter B. Gilkey, and Andrew J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rep. 66 (1980), no. 6, 213–393. MR 598586, https://doi.org/10.1016/0370-1573(80)90130-1
- [15] Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- [16] Paweł Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987), no. 3, 179–191. MR 962295, https://doi.org/10.1007/BF00128019
- [17] Peter B. Gilkey, The index theorem and the heat equation, Publish or Perish, Inc., Boston, Mass., 1974. Notes by Jon Sacks; Mathematics Lecture Series, No. 4. MR 0458504
- [18] C. Robin Graham and John M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), no. 2, 186–225. MR 1112625, https://doi.org/10.1016/0001-8708(91)90071-E
- [19] Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, https://doi.org/10.2307/1971103
- [20] Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR 720933
- [21] Matthew J. Gursky and Qing Han, Non-existence of Poincaré-Einstein manifolds with prescribed conformal infinity, Geom. Funct. Anal. 27 (2017), no. 4, 863–879. MR 3678503, https://doi.org/10.1007/s00039-017-0414-y
- [22] S. W. Hawking and Don N. Page, Thermodynamics of black holes in anti-de Sitter space, Comm. Math. Phys. 87 (1982/83), no. 4, 577–588. MR 691045
- [23] Oussama Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104 (1986), no. 1, 151–162. MR 834486
- [24] Oussama Hijazi, Sebastián Montiel, and Xiao Zhang, Eigenvalues of the Dirac operator on manifolds with boundary, Comm. Math. Phys. 221 (2001), no. 2, 255–265. MR 1845323, https://doi.org/10.1007/s002200100475
- [25] Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1–55. MR 358873, https://doi.org/10.1016/0001-8708(74)90021-8
- [26] D. D. Joyce, Compact 8-manifolds with holonomy 𝑆𝑝𝑖𝑛(7), Invent. Math. 123 (1996), no. 3, 507–552. MR 1383960, https://doi.org/10.1007/s002220050039
- [27] John M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom. 3 (1995), no. 1-2, 253–271. MR 1362652, https://doi.org/10.4310/CAG.1995.v3.n2.a2
- [28] John M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 864, vi+83. MR 2252687, https://doi.org/10.1090/memo/0864
- [29] André Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7–9 (French). MR 156292
- [30] Juan Maldacena, The large 𝑁 limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998), no. 2, 231–252. MR 1633016, https://doi.org/10.4310/ATMP.1998.v2.n2.a1
- [31] Fernando Codá Marques, Deforming three-manifolds with positive scalar curvature, Ann. of Math. (2) 176 (2012), no. 2, 815–863. MR 2950765, https://doi.org/10.4007/annals.2012.176.2.3
- [32] Rafe Mazzeo and Frank Pacard, Maskit combinations of Poincaré-Einstein metrics, Adv. Math. 204 (2006), no. 2, 379–412. MR 2249618, https://doi.org/10.1016/j.aim.2005.06.001
- [33] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
- [34] Peyman Morteza and Jeff A. Viaclovsky, The Calabi metric and desingularization of Einstein orbifolds, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 4, 1201–1245. MR 4071325, https://doi.org/10.4171/JEMS/943
- [35] Jonathan Rosenberg, Manifolds of positive scalar curvature: a progress report, Surveys in differential geometry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, Somerville, MA, 2007, pp. 259–294. MR 2408269, https://doi.org/10.4310/SDG.2006.v11.n1.a9
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 53Z05
Retrieve articles in all journals with MSC (2020): 53Z05
Additional Information
Matthew J. Gursky
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email:
mgursky@nd.edu
Qing Han
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email:
qhan@nd.edu
Stephan Stolz
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email:
Stephan.A.Stolz.1@nd.edu
DOI:
https://doi.org/10.1090/tran/8308
Received by editor(s):
January 25, 2019
Received by editor(s) in revised form:
September 20, 2020
Published electronically:
March 2, 2021
Additional Notes:
The first author acknowledges the support of NSF grants DMS-1509633 and DMS-1547292.
The second author acknowledges the support of NSF grant DMS-1404596.
The third author acknowledges the support of NSF grant DMS-1547292.
Article copyright:
© Copyright 2021
American Mathematical Society