The geometry of double nested Hilbert schemes of points on curves
HTML articles powered by AMS MathViewer
- by Michele Graffeo, Paolo Lella, Sergej Monavari, Andrea T. Ricolfi and Alessio Sammartano;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9247
- Published electronically: June 18, 2025
- PDF | Request permission
Abstract:
Let $C$ be a smooth curve. In this paper we investigate the geometric properties of the double nested Hilbert scheme of points on $C$, a moduli space introduced by the third author in the context of BPS invariants of local curves and sheaf counting on Calabi–Yau 3-folds. We prove this moduli space is connected, reduced and of pure dimension; we list its components via an explicit combinatorial characterisation and we show they can be resolved, when singular, by products of symmetric products of $C$. We achieve this via a purely algebraic analysis of the factorisation properties of the monoid of reverse plane partitions. We discuss the (virtual) fundamental class of the moduli space, we describe the local equations cutting it inside a smooth ambient space, and finally we provide a closed formula for its motivic class in the Grothendieck ring of varieties.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Winfried Bruns, Pedro A. García-Sánchez, and Luca Moci, The monoid of monotone functions on a poset and quasi-arithmetic multiplicities for uniform matroids, J. Algebra 569 (2021), 377–400. MR 4187240, DOI 10.1016/j.jalgebra.2020.10.026
- Jim Bryan and Andrew Morrison, Motivic classes of commuting varieties via power structures, J. Algebraic Geom. 24 (2015), no. 1, 183–199. MR 3275657, DOI 10.1090/S1056-3911-2014-00657-3
- Jim Bryan and Rahul Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), no. 1, 101–136. With an appendix by Bryan, C. Faber, A. Okounkov and Pandharipande. MR 2350052, DOI 10.1090/S0894-0347-06-00545-5
- Yalong Cao, Martijn Kool, and Sergej Monavari, $K$-theoretic DT/PT correspondence for toric Calabi-Yau 4-folds, Comm. Math. Phys. 396 (2022), no. 1, 225–264. MR 4499016, DOI 10.1007/s00220-022-04472-0
- Scott T. Chapman and Jim Coykendall, Half-factorial domains, a survey, Non-Noetherian commutative ring theory, Math. Appl., vol. 520, Kluwer Acad. Publ., Dordrecht, 2000, pp. 97–115. MR 1858159
- Jan Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), no. 1, 39–90. MR 1616606, DOI 10.2140/pjm.1998.183.39
- Wu-yen Chuang, Duiliu-Emanuel Diaconescu, Ron Donagi, and Tony Pantev, Parabolic refined invariants and Macdonald polynomials, Comm. Math. Phys. 335 (2015), no. 3, 1323–1379. MR 3320315, DOI 10.1007/s00220-014-2184-9
- Ben Davison and Andrea T. Ricolfi, The local motivic DT/PT correspondence, J. Lond. Math. Soc. (2) 104 (2021), no. 3, 1384–1432. MR 4332481, DOI 10.1112/jlms.12463
- Jan Denef and François Loeser, Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000) Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 327–348. MR 1905328
- Theodosios Douvropoulos, Joachim Jelisiejew, Bernt Ivar Utstøl Nødland, and Zach Teitler, The Hilbert scheme of 11 points in $\Bbb A^3$ is irreducible, Combinatorial algebraic geometry, Fields Inst. Commun., vol. 80, Fields Inst. Res. Math. Sci., Toronto, ON, 2017, pp. 321–352. MR 3752506
- Barbara Fantechi and Andrea T. Ricolfi, On the stack of 0-dimensional coherent sheaves: motivic aspects, arXiv:2403.07859, 2024.
- Valentin Féray and Victor Reiner, $P$-partitions revisited, J. Commut. Algebra 4 (2012), no. 1, 101–152. MR 2913529, DOI 10.1216/JCA-2012-4-1-101
- Giorgio Ferrarese and Margherita Roggero, Homogeneous varieties for Hilbert schemes, Int. J. Algebra 3 (2009), no. 9-12, 547–557. MR 2545200
- Chandranandan Gangopadhyay, Parvez Rasul, and Ronnie Sebastian, Irreducibility of some nested Hilbert schemes, Proc. Amer. Math. Soc. 152 (2024), no. 5, 1857–1870. MR 4728457, DOI 10.1090/proc/16698
- Emden R. Gansner, The Hillman-Grassl correspondence and the enumeration of reverse plane partitions, J. Combin. Theory Ser. A 30 (1981), no. 1, 71–89. MR 607040, DOI 10.1016/0097-3165(81)90041-8
- P. A. García Sánchez, I. Ojeda, and A. Sánchez-R.-Navarro, Factorization invariants in half-factorial affine semigroups, Internat. J. Algebra Comput. 23 (2013), no. 1, 111–122. MR 3040805, DOI 10.1142/S0218196713500033
- Adriano M. Garsia, Combinatorial methods in the theory of Cohen-Macaulay rings, Adv. in Math. 38 (1980), no. 3, 229–266. MR 597728, DOI 10.1016/0001-8708(80)90006-7
- Alexander Garver, Rebecca Patrias, and Hugh Thomas, Minuscule reverse plane partitions via quiver representations, Selecta Math. (N.S.) 29 (2023), no. 3, Paper No. 37, 48. MR 4581740, DOI 10.1007/s00029-023-00831-4
- Alfred Geroldinger and Franz Halter-Koch, Non-unique factorizations, Pure and Applied Mathematics (Boca Raton), vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic theory. MR 2194494, DOI 10.1201/9781420003208
- Franco Giovenzana, Luca Giovenzana, Michele Graffeo, and Paolo Lella, Unexpected but recurrent phenomena for Quot and Hilbert schemes of points, arXiv:2403.03146, 2024.
- T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487–518. MR 1666787, DOI 10.1007/s002220050293
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57. MR 2046199, DOI 10.4310/MRL.2004.v11.n1.a6
- S. M. Guseĭn-Zade, I. Luengo, and A. Mel′e-Èrnandez, On the power structure over the Grothendieck ring of varieties and its applications, Tr. Mat. Inst. Steklova 258 (2007), no. Anal. i Osob. Ch. 1, 58–69 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 258 (2007), no. 1, 53–64. MR 2400523, DOI 10.1134/S0081543807030066
- A. P. Hillman and R. M. Grassl, Reverse plane partitions and tableau hook numbers, J. Combinatorial Theory Ser. A 21 (1976), no. 2, 216–221. MR 414387, DOI 10.1016/0097-3165(76)90065-0
- Anthony Iarrobino, Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984), no. 1, 337–378. MR 748843, DOI 10.1090/S0002-9947-1984-0748843-4
- Joachim Jelisiejew, Pathologies on the Hilbert scheme of points, Invent. Math. 220 (2020), no. 2, 581–610. MR 4081138, DOI 10.1007/s00222-019-00939-5
- Joachim Jelisiejew, Open problems in deformations of Artinian algebras, Hilbert schemes and around, arXiv:2307.08777, 2023.
- Joachim Jelisiejew, Martijn Kool, and Reinier F. Schmiermann, Behrend’s function is not constant on $\mathrm {Hilb}^n(\mathbb {C}^3)$, arXiv:2311.05408, 2023.
- Mikhail Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, arXiv:math/0001005, 2000.
- Ya. Kononov, A. Okounkov, and A. Osinenko, The 2-leg vertex in K-theoretic DT theory, Comm. Math. Phys. 382 (2021), no. 3, 1579–1599. MR 4232774, DOI 10.1007/s00220-021-03936-z
- Paolo Lella and Margherita Roggero, Rational components of Hilbert schemes, Rend. Semin. Mat. Univ. Padova 126 (2011), 11–45. MR 2918197, DOI 10.4171/RSMUP/126-2
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- Sergej Monavari, Double nested Hilbert schemes and the local stable pairs theory of curves, Compos. Math. 158 (2022), no. 9, 1799–1849. MR 4495663, DOI 10.1112/s0010437x22007606
- Sergej Monavari and Andrea T. Ricolfi, On the motive of the nested Quot scheme of points on a curve, J. Algebra 610 (2022), 99–118. MR 4463016, DOI 10.1016/j.jalgebra.2022.07.011
- Sergej Monavari and Andrea T. Ricolfi, Sur la lissité du schéma Quot ponctuel emboîté, Canad. Math. Bull. 66 (2023), no. 1, 178–184 (French, with French summary). MR 4552508, DOI 10.4153/S0008439522000224
- Sergej Monavari and Andrea T. Ricolfi, Hyperquot schemes on curves: virtual class and motivic invariants, arXiv:2404.17942, 2024.
- Nikita Nekrasov and Andrei Okounkov, Membranes and sheaves, Algebr. Geom. 3 (2016), no. 3, 320–369. MR 3504535, DOI 10.14231/AG-2016-015
- Andrei Okounkov, Lectures on K-theoretic computations in enumerative geometry, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 251–380. MR 3752463, DOI 10.1090/pcms/024
- A. Okounkov and R. Pandharipande, The local Donaldson-Thomas theory of curves, Geom. Topol. 14 (2010), no. 3, 1503–1567. MR 2679579, DOI 10.2140/gt.2010.14.1503
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, DOI 10.1007/s00222-009-0203-9
- John Pardon, Universally counting curves in Calabi–Yau threefolds, arXiv:2308.02948, 2023.
- Ritvik Ramkumar and Alessio Sammartano, Rational singularities of nested Hilbert schemes, Int. Math. Res. Not. IMRN 2 (2024), 1061–1122. MR 4692367, DOI 10.1093/imrn/rnac365
- Andrea T. Ricolfi, On the motive of the Quot scheme of finite quotients of a locally free sheaf, J. Math. Pures Appl. (9) 144 (2020), 50–68 (English, with English and French summaries). MR 4175444, DOI 10.1016/j.matpur.2020.10.001
- Andrea T. Ricolfi, A sign that used to annoy me, and still does, J. Geom. Phys. 195 (2024), Paper No. 105032, 7. MR 4660630, DOI 10.1016/j.geomphys.2023.105032
- Tim Ryan and Gregory Taylor, Irreducibility and singularities of some nested Hilbert schemes, J. Algebra 609 (2022), 380–406. MR 4457391, DOI 10.1016/j.jalgebra.2022.05.037
- David Rydh, Families of cycles and the Chow scheme, Ph.D. thesis, KTH, Stockholm, 2008.
- Maximilian Schimpf, On DT/PT for local curves and Bethe equations, To appear.
- Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603
- The Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2023.
- Richard P. Stanley, Theory and application of plane partitions. I, II, Studies in Appl. Math. 50 (1971), 167–188; ibid. 50 (1971), 259–279. MR 325407, DOI 10.1002/sapm1971503259
- Richard P. Stanley, Ordered structures and partitions, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, Providence, RI, 1972. MR 332509
- Ravi Vakil, Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math. 164 (2006), no. 3, 569–590. MR 2227692, DOI 10.1007/s00222-005-0481-9
Bibliographic Information
- Michele Graffeo
- Affiliation: SISSA, Via Bonomea 265, 34136, Trieste, Italy
- MR Author ID: 1545550
- ORCID: 0000-0002-7973-6023
- Email: mgraffeo@sissa.it
- Paolo Lella
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- MR Author ID: 948816
- ORCID: 0000-0001-8045-7876
- Email: paolo.lella@polimi.it
- Sergej Monavari
- Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- MR Author ID: 1428054
- ORCID: 0000-0002-0181-8977
- Email: sergej.monavari@epfl.ch
- Andrea T. Ricolfi
- Affiliation: SISSA, Via Bonomea 265, 34136, Trieste, Italy
- MR Author ID: 1160920
- ORCID: 0000-0002-8172-2026
- Email: aricolfi@sissa.it
- Alessio Sammartano
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- MR Author ID: 942872
- ORCID: 0000-0002-0377-1375
- Email: alessio.sammartano@polimi.it
- Received by editor(s): December 14, 2023
- Received by editor(s) in revised form: May 21, 2024
- Published electronically: June 18, 2025
- Additional Notes: The third author was supported by the Chair of Arithmetic Geometry, EPFL. The first, second, and fifth authors were partially supported by the project PRIN 2020 “Squarefree Gröbner degenerations, special varieties and related topics” (MUR, project number 2020355B8Y). The fourth author was partially supported by the project PRIN 2022 “Geometry of algebraic structures: moduli, invariants, deformations” (MUR, project number 2022BTA242).
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 14C05; Secondary 14N35, 20M14, 05E14, 06A07
- DOI: https://doi.org/10.1090/tran/9247