On stacky surfaces and noncommutative surfaces
HTML articles powered by AMS MathViewer
- by Eleonore Faber, Colin Ingalls, Shinnosuke Okawa and Matthew Satriano;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9201
- Published electronically: April 4, 2025
- HTML | PDF | Request permission
Abstract:
Let ${\mathbf {k}}$ be an algebraically closed field of characteristic $\geq 7$ or zero. Let ${\mathcal {A}}$ be a tame order of global dimension $2$ over a normal surface $X$ over ${\mathbf {k}}$ such that $Z({\mathcal {A}}) = {\mathcal {O}}_X$ is locally a direct summand of ${\mathcal {A}}$. We prove that there is a $\mu _N$-gerbe ${\mathcal {X}}$ over a smooth tame algebraic stack whose generic stabilizer is trivial, with coarse space $X$ such that the category of 1-twisted coherent sheaves on ${\mathcal {X}}$ is equivalent to the category of coherent sheaves of modules on ${\mathcal {A}}$. Moreover, the stack ${\mathcal {X}}$ is constructed explicitly through a sequence of root stacks, canonical stacks, and gerbes. This extends results of Reiten and Van den Bergh to finite characteristic and the global situation. As applications, in characteristic $0$ we prove that such orders are geometric noncommutative schemes in the sense of Orlov, and we study relations with Hochschild cohomology and Connes’ convolution algebra.References
- Dima Arinkin, Andrei Căldăraru, and Márton Hablicsek, Formality of derived intersections and the orbifold HKR isomorphism, J. Algebra 540 (2019), 100–120. MR 4003476, DOI 10.1016/j.jalgebra.2019.08.002
- Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR 2450211, DOI 10.1353/ajm.0.0017
- Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091 (English, with English and French summaries). MR 2427954, DOI 10.5802/aif.2378
- M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188, DOI 10.1007/BF02684596
- K. A. Brown and C. R. Hajarnavis, Homologically homogeneous rings, Trans. Amer. Math. Soc. 281 (1984), no. 1, 197–208. MR 719665, DOI 10.1090/S0002-9947-1984-0719665-5
- Tristan Bice, An algebraic approach to the Weyl groupoid, J. Algebra 568 (2021), 193–240. MR 4166588, DOI 10.1016/j.jalgebra.2020.10.010
- Daniel Bergh, Valery A. Lunts, and Olaf M. Schnürer, Geometricity for derived categories of algebraic stacks, Selecta Math. (N.S.) 22 (2016), no. 4, 2535–2568. MR 3573964, DOI 10.1007/s00029-016-0280-8
- Gabriella Böhm, Hopf algebroids, Handbook of algebra. Vol. 6, Handb. Algebr., vol. 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 173–235. MR 2553659, DOI 10.1016/S1570-7954(08)00205-2
- Charles Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007), no. 2, 405–427. MR 2306040, DOI 10.1353/ajm.2007.0007
- Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, DOI 10.2307/2372597
- Daniel Chan and Colin Ingalls, Non-commutative coordinate rings and stacks, Proc. London Math. Soc. (3) 88 (2004), no. 1, 63–88. MR 2018958, DOI 10.1112/S0024611503014278
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Johan deJong, A result of gabber, https://www.math.columbia.edu/~dejong/papers/2-gabber.pdf
- Barbara Fantechi, Etienne Mann, and Fabio Nironi, Smooth toric Deligne-Mumford stacks, J. Reine Angew. Math. 648 (2010), 201–244. MR 2774310, DOI 10.1515/CRELLE.2010.084
- Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 344253, DOI 10.1007/978-3-662-62103-5
- Anton Geraschenko and Matthew Satriano, A “bottom up” characterization of smooth Deligne-Mumford stacks, Int. Math. Res. Not. IMRN 21 (2017), 6469–6483. MR 3719470, DOI 10.1093/imrn/rnw201
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- Osamu Iyama and Michael Wemyss, Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math. 197 (2014), no. 3, 521–586. MR 3251829, DOI 10.1007/s00222-013-0491-y
- Bernhard Keller, Derived invariance of higher structures on the Hochschild complex, https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf, 2003.
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- Andrew Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259–271. MR 2483938, DOI 10.1090/pspum/080.1/2483938
- Alexander Kumjian, On $C^\ast$-diagonals, Canad. J. Math. 38 (1986), no. 4, 969–1008. MR 854149, DOI 10.4153/CJM-1986-048-0
- Andrew Kresch and Angelo Vistoli, On coverings of Deligne-Mumford stacks and surjectivity of the Brauer map, Bull. London Math. Soc. 36 (2004), no. 2, 188–192. MR 2026412, DOI 10.1112/S0024609303002728
- Max Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008), no. 1, 1–31. MR 2388554, DOI 10.1112/S0010437X07003144
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR 276239, DOI 10.1007/BF02684604
- Christian Liedtke, Gebhard Martin, and Yuya Matsumoto, Linearly reductive quotient singularities, arXiv:2102.01067.
- Xin Li and Jean Renault, Cartan subalgebras in $\textrm {C}^*$-algebras. Existence and uniqueness, Trans. Amer. Math. Soc. 372 (2019), no. 3, 1985–2010. MR 3976582, DOI 10.1090/tran/7654
- Christian Liedtke and Matthew Satriano, On the birational nature of lifting, Adv. Math. 254 (2014), 118–137. MR 3161094, DOI 10.1016/j.aim.2013.10.030
- Jacob Lurie, Tannaka duality for geometric stacks, arXiv:math/0412266, 2004.
- Siddharth Mathur, The resolution property via Azumaya algebras, J. Reine Angew. Math. 774 (2021), 93–126. MR 4250478, DOI 10.1515/crelle-2021-0002
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, NJ, 1980. MR 559531
- I. Moerdijk, Lie groupoids, gerbes, and non-abelian cohomology, $K$-Theory 28 (2003), no. 3, 207–258. MR 2017529, DOI 10.1023/A:1026251115381
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Revised edition, Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR 1811901, DOI 10.1090/gsm/030
- Martin Olsson, A boundedness theorem for Hom-stacks, Math. Res. Lett. 14 (2007), no. 6, 1009–1021. MR 2357471, DOI 10.4310/MRL.2007.v14.n6.a9
- Martin Olsson, Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, vol. 62, American Mathematical Society, Providence, RI, 2016. MR 3495343, DOI 10.1090/coll/062
- Dmitri Orlov, Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math. 302 (2016), 59–105. MR 3545926, DOI 10.1016/j.aim.2016.07.014
- Mark Ramras, Maximal orders over regular local rings of dimension two, Trans. Amer. Math. Soc. 142 (1969), 457–479. MR 245572, DOI 10.1090/S0002-9947-1969-0245572-2
- Idun Reiten and Michel Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 80 (1989), no. 408, viii+72. MR 978602, DOI 10.1090/memo/0408
- Matthew Satriano, The Chevalley-Shephard-Todd theorem for finite linearly reductive group schemes, Algebra Number Theory 6 (2012), no. 1, 1–26. MR 2950159, DOI 10.2140/ant.2012.6.1
- Peter Schauenburg, The dual and the double of a Hopf algebroid are Hopf algebroids, Appl. Categ. Structures 25 (2017), no. 1, 147–154. MR 3606499, DOI 10.1007/s10485-015-9418-7
- T. A. Springer, Nonabelian $H^{2}$ in Galois cohomology, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, RI, 1966, pp. 164–182. MR 209297
- The Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2022.
- J. T. Stafford and M. Van den Bergh, Noncommutative resolutions and rational singularities, Michigan Math. J. 57 (2008), 659–674. Special volume in honor of Melvin Hochster. MR 2492474, DOI 10.1307/mmj/1220879430
- Burt Totaro, The resolution property for schemes and stacks, J. Reine Angew. Math. 577 (2004), 1–22. MR 2108211, DOI 10.1515/crll.2004.2004.577.1
- M. Van den Bergh, Non-commutative $\Bbb {P}^1$-bundles over commutative schemes, Trans. Amer. Math. Soc. 364 (2012), no. 12, 6279–6313. MR 2958936, DOI 10.1090/S0002-9947-2012-05469-9
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
- Amnon Yekutieli, Dualizing complexes, Morita equivalence and the derived Picard group of a ring, J. London Math. Soc. (2) 60 (1999), no. 3, 723–746. MR 1753810, DOI 10.1112/S0024610799008108
Bibliographic Information
- Eleonore Faber
- Affiliation: School of Mathematics, University of Leeds, LS2 9JT Leeds, UK and Institut für Mathematik und Wissenschaftliches Rechnen, Universität Graz, Heinrichstr. 36, A-8010 Graz, Austria
- MR Author ID: 921567
- ORCID: 0000-0003-2541-8916
- Email: e.m.faber@leeds.ac.uk
- Colin Ingalls
- Affiliation: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- MR Author ID: 350601
- ORCID: 0000-0002-6430-0403
- Email: cingalls@math.carleton.ca
- Shinnosuke Okawa
- Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- MR Author ID: 953215
- ORCID: 0000-0002-3010-1529
- Email: okawa@math.sci.osaka-u.ac.jp
- Matthew Satriano
- Affiliation: Department of Pure Mathematics, University of Waterloo, Canada
- MR Author ID: 986189
- ORCID: 0000-0001-7954-1210
- Email: msatrian@uwaterloo.ca
- Received by editor(s): April 22, 2023
- Received by editor(s) in revised form: February 7, 2024
- Published electronically: April 4, 2025
- Additional Notes: The work of the first author was supported by the Engineering and Physical Sciences Research Council [grant numbers EP/R014604/1, EP/W007509/1]. Part of this work was carried out at the Isaac Newton Institute for Mathematical Sciences in Cambridge.
The second author was partially supported by a Discovery Grant from the National Science and Engineering Research Council of Canada
The third author was partially supported by JSPS Grants-in-Aid for Scientific Research (18H01120, 19KK0348, 20H01797, 20H01794, 21H04994).
The fourth author was partially supported by a Discovery Grant from the National Science and Engineering Research Council of Canada and a Mathematics Faculty Research Chair. - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 14A22, 16S38, 14A20
- DOI: https://doi.org/10.1090/tran/9201