Analytic capacity and dimension of sets with plenty of big projections
HTML articles powered by AMS MathViewer
- by Damian Dąbrowski and Michele Villa;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9265
- Published electronically: March 19, 2025
Abstract:
Our main result marks progress on an old conjecture of Vitushkin. We show that a compact set in the plane with plenty of big projections (PBP) has positive analytic capacity, along with a quantitative lower bound. A higher dimensional counterpart is also proved for capacities related to the Riesz kernel, including the Lipschitz harmonic capacity. The proof uses a construction of a doubling Frostman measure on a lower content regular set, which may be of independent interest.
Our second main result is the Analyst’s Traveling Salesman Theorem for sets with plenty of big projections. As a corollary, we obtain a lower bound for the Hausdorff dimension of uniformly wiggly sets with PBP. The second corollary is an estimate for the capacities of subsets of sets with PBP, in the spirit of the quantitative solution to Denjoy’s conjecture.
References
- Lars V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1–11. MR 21108
- Jonas Azzam and Raanan Schul, An analyst’s traveling salesman theorem for sets of dimension larger than one, Math. Ann. 370 (2018), no. 3-4, 1389–1476. MR 3770170, DOI 10.1007/s00208-017-1609-0
- Jonas Azzam and Xavier Tolsa, Characterization of $n$-rectifiability in terms of Jones’ square function: Part II, Geom. Funct. Anal. 25 (2015), no. 5, 1371–1412. MR 3426057, DOI 10.1007/s00039-015-0334-7
- Jonas Azzam and Michele Villa, Quantitative comparisons of multiscale geometric properties, Anal. PDE 14 (2021), no. 6, 1873–1904. MR 4308668, DOI 10.2140/apde.2021.14.1873
- Jonas Azzam, Hausdorff dimension of wiggly metric spaces, Ark. Mat. 53 (2015), no. 1, 1–36. MR 3319612, DOI 10.1007/s11512-014-0197-4
- Christopher J. Bishop and Peter W. Jones, Wiggly sets and limit sets, Ark. Mat. 35 (1997), no. 2, 201–224. MR 1478778, DOI 10.1007/BF02559967
- Christopher J. Bishop and Yuval Peres, Fractals in probability and analysis, Cambridge Studies in Advanced Mathematics, vol. 162, Cambridge University Press, Cambridge, 2017. MR 3616046, DOI 10.1017/9781316460238
- A.-P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1324–1327. MR 466568, DOI 10.1073/pnas.74.4.1324
- Alan Chang, Damian Dąbrowski, Tuomas Orponen, and Michele Villa, Structure of sets with nearly maximal Favard length, Anal. PDE 17 (2024), no. 4, 1473–1500. MR 4746876, DOI 10.2140/apde.2024.17.1473
- Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI 10.4064/cm-60-61-2-601-628
- Alan Chang and Xavier Tolsa, Analytic capacity and projections, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 12, 4121–4159. MR 4176788, DOI 10.4171/jems/1004
- Guy David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoamericana 4 (1988), no. 1, 73–114 (French). MR 1009120, DOI 10.4171/RMI/64
- Guy David, Unrectifiable $1$-sets have vanishing analytic capacity, Rev. Mat. Iberoamericana 14 (1998), no. 2, 369–479 (English, with English and French summaries). MR 1654535, DOI 10.4171/RMI/242
- Guy David, Hausdorff dimension of uniformly non flat sets with topology, Publ. Mat. 48 (2004), no. 1, 187–225. MR 2044644, DOI 10.5565/PUBLMAT_{4}8104_{0}9
- Guy C. David and Bruce Kleiner, Rectifiability of planes and Alberti representations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 2, 723–756. MR 3964412
- Guy C. David and Enrico Le Donne, A note on topological dimension, Hausdorff measure, and rectifiability, Proc. Amer. Math. Soc. 148 (2020), no. 10, 4299–4304. MR 4135298, DOI 10.1090/proc/15051
- G. David and S. Semmes, Singular integrals and rectifiable sets in $\textbf {R}^n$: Beyond Lipschitz graphs, Astérisque 193 (1991), 152 (English, with French summary). MR 1113517
- Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993. MR 1251061, DOI 10.1090/surv/038
- Guy David and Stephen Semmes, Quantitative rectifiability and Lipschitz mappings, Trans. Amer. Math. Soc. 337 (1993), no. 2, 855–889. MR 1132876, DOI 10.1090/S0002-9947-1993-1132876-8
- D. Dąbrowski, and X. Tolsa, The measures with $L^2$-bounded Riesz transform and the Painlevé problem, Mem. Amer. Math. Soc., to appear. arXiv:2402.08615, 2024
- James J. Dudziak, Vitushkin’s conjecture for removable sets, Universitext, Springer, New York, 2010. MR 2676222, DOI 10.1007/978-1-4419-6709-1
- J. Graczyk, P. W. Jones, and N. Mihalache, Metric properties of mean wiggly continua, Preprint, 2012, arXiv:1203.6501.
- Jacek Graczyk and Nicolae Mihalache, Optimal bounds for the analytical traveling salesman problem, J. Math. Anal. Appl. 507 (2022), no. 2, Paper No. 125811, 11. MR 4343767, DOI 10.1016/j.jmaa.2021.125811
- Daniel Girela-Sarrión, Geometric conditions for the $L^2$-boundedness of singular integral operators with odd kernels with respect to measures with polynomial growth in $\Bbb R^d$, J. Anal. Math. 137 (2019), no. 1, 339–372. MR 3938007, DOI 10.1007/s11854-018-0075-2
- M. Hyde. The restricted content and the d-dimensional analyst’s travelling salesman theorem for general sets. Adv. Math., 397:108189, 2022. \PrintDOI{10.1016/j.aim.2022.108189}.
- Matthew Hyde, A $d$-dimensional analyst’s travelling salesman theorem for subsets of Hilbert space, Math. Ann. 388 (2024), no. 1, 359–452. MR 4693937, DOI 10.1007/s00208-022-02509-2
- Peter W. Jones and Takafumi Murai, Positive analytic capacity but zero Buffon needle probability, Pacific J. Math. 133 (1988), no. 1, 99–114. MR 936358
- Helen Joyce and Peter Mörters, A set with finite curvature and projections of zero length, J. Math. Anal. Appl. 247 (2000), no. 1, 126–135. MR 1766928, DOI 10.1006/jmaa.2000.6831
- Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1–15. MR 1069238, DOI 10.1007/BF01233418
- Pekka Koskela and Steffen Rohde, Hausdorff dimension and mean porosity, Math. Ann. 309 (1997), no. 4, 593–609. MR 1483825, DOI 10.1007/s002080050129
- Antti Käenmäki, Tapio Rajala, and Ville Suomala, Existence of doubling measures via generalised nested cubes, Proc. Amer. Math. Soc. 140 (2012), no. 9, 3275–3281. MR 2917099, DOI 10.1090/S0002-9939-2012-11161-X
- Pertti Mattila, Smooth maps, null-sets for integralgeometric measure and analytic capacity, Ann. of Math. (2) 123 (1986), no. 2, 303–309. MR 835764, DOI 10.2307/1971273
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Pertti Mattila, Rectifiability—a survey, London Mathematical Society Lecture Note Series, vol. 483, Cambridge University Press, Cambridge, 2023. MR 4520153
- Henri Martikainen and Tuomas Orponen, Characterising the big pieces of Lipschitz graphs property using projections, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 5, 1055–1073. MR 3790063, DOI 10.4171/JEMS/782
- P. Mattila and P. V. Paramonov, On geometric properties of harmonic $\textrm {Lip}_1$-capacity, Pacific J. Math. 171 (1995), no. 2, 469–491. MR 1372240
- Takafumi Murai, Comparison between analytic capacity and the Buffon needle probability, Trans. Amer. Math. Soc. 304 (1987), no. 2, 501–514. MR 911082, DOI 10.1090/S0002-9947-1987-0911082-0
- Takafumi Murai, The power $3/2$ appearing in the estimate of analytic capacity, Pacific J. Math. 143 (1990), no. 2, 313–340. MR 1051079
- Fedor Nazarov, Xavier Tolsa, and Alexander Volberg, On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1, Acta Math. 213 (2014), no. 2, 237–321. MR 3286036, DOI 10.1007/s11511-014-0120-7
- Fedor Nazarov, Xavier Tolsa, and Alexander Volberg, The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions, Publ. Mat. 58 (2014), no. 2, 517–532. MR 3264510
- Kate Okikiolu, Characterization of subsets of rectifiable curves in $\textbf {R}^n$, J. London Math. Soc. (2) 46 (1992), no. 2, 336–348. MR 1182488, DOI 10.1112/jlms/s2-46.2.336
- Tuomas Orponen, Plenty of big projections imply big pieces of Lipschitz graphs, Invent. Math. 226 (2021), no. 2, 653–709. MR 4323640, DOI 10.1007/s00222-021-01055-z
- Hervé Pajot, Analytic capacity, rectifiability, Menger curvature and the Cauchy integral, Lecture Notes in Mathematics, vol. 1799, Springer-Verlag, Berlin, 2002. MR 1952175, DOI 10.1007/b84244
- P. V. Paramonov, Harmonic approximations in the $C^1$-norm, Mat. Sb. 181 (1990), no. 10, 1341–1365 (Russian); English transl., Math. USSR-Sb. 71 (1992), no. 1, 183–207. MR 1085885, DOI 10.1070/SM1992v071n01ABEH002129
- Laura Prat, On the semiadditivity of the capacities associated with signed vector valued Riesz kernels, Trans. Amer. Math. Soc. 364 (2012), no. 11, 5673–5691. MR 2946926, DOI 10.1090/S0002-9947-2012-05724-2
- Raanan Schul, Subsets of rectifiable curves in Hilbert space—the analyst’s TSP, J. Anal. Math. 103 (2007), 331–375. MR 2373273, DOI 10.1007/s11854-008-0011-y
- Xavier Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), no. 1, 105–149. MR 1982794, DOI 10.1007/BF02393237
- Xavier Tolsa, Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann. of Math. (2) 162 (2005), no. 3, 1243–1304. MR 2179730, DOI 10.4007/annals.2005.162.1243
- Xavier Tolsa, Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory, Progress in Mathematics, vol. 307, Birkhäuser/Springer, Cham, 2014. MR 3154530, DOI 10.1007/978-3-319-00596-6
- J. Verdera, Birth and life of the $L^{2}$ boundedness of the Cauchy Integral on Lipschitz graphs, Preprint, 2021, arXiv:2109.06690.
- M. Villa, Higher dimensional jordan curves, Preprint, 2019, arXiv:1908.10289.
- A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6(138), 141–199 (Russian). MR 229838
- Alexander Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conference Series in Mathematics, vol. 100, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003. MR 2019058, DOI 10.1090/cbms/100
Bibliographic Information
- Damian Dąbrowski
- Affiliation: University of Jyväskylä, P.O. Box 35 (MaD), 40014, Finland
- ORCID: 0000-0003-4495-6090
- Email: damian.m.dabrowski@jyu.fi
- Michele Villa
- Affiliation: Research Unit of Mathematical Sciences, University of Oulu, P.O. Box 8000, FI-90014, Finland
- Address at time of publication: Departamento de Matemáticas, Universidad del País Vasco (UPV/EHU), Barrio Sarriena 48940 Leioa, Spain
- MR Author ID: 1386673
- Email: michele.villa@ehu.eus
- Received by editor(s): April 28, 2023
- Received by editor(s) in revised form: April 16, 2024
- Published electronically: March 19, 2025
- Additional Notes: The authors were supported by the Academy of Finland via the project Incidences on Fractals, grant No. 321896. The second author was also supported by a starting grant of the University of Oulu
- © Copyright 2025 by the authors
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 28A75; Secondary 28A80, 42B20
- DOI: https://doi.org/10.1090/tran/9265