Non-commutative resolutions for Segre products and Cohen-Macaulay rings of hereditary representation type
HTML articles powered by AMS MathViewer
- by Norihiro Hanihara;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9288
- Published electronically: January 30, 2025
- HTML | PDF | Request permission
Abstract:
We study commutative Cohen-Macaulay rings whose CohenMacaulay representation theory is controlled by representations of quivers, which we call hereditary representation type. Based on tilting theory and cluster tilting theory, we construct some commutative Cohen-Macaulay rings of hereditary representation type. First, we give a general existence theorem of cluster tilting modules or non-commutative crepant resolutions on the Segre product of two commutative Gorenstein rings whenever each factor has such an object. As an application, we obtain three examples of Gorenstein rings of hereditary representation type coming from Segre products of polynomial rings. Next, we introduce extended numerical semigroup rings which generalize numerical semigroup rings and form a class of one-dimensional Cohen-Macaulay non-domains, and among them we provide one family of Gorenstein rings of hereditary representation type. Furthermore, we discuss a $4$-dimensional non-Gorenstein Cohen-Macaulay ring whose representations are still controlled by a finite dimensional hereditary algebra. We show that it has a unique $2$-cluster tilting object, and give a complete classification of rigid Cohen-Macaulay modules, which turns out to be only finitely many.References
- Claire Amiot, On the structure of triangulated categories with finitely many indecomposables, Bull. Soc. Math. France 135 (2007), no. 3, 435–474 (English, with English and French summaries). MR 2430189, DOI 10.24033/bsmf.2542
- Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590 (English, with English and French summaries). MR 2640929, DOI 10.5802/aif.2499
- Claire Amiot, Osamu Iyama, and Idun Reiten, Stable categories of Cohen-Macaulay modules and cluster categories, Amer. J. Math. 137 (2015), no. 3, 813–857. MR 3357123, DOI 10.1353/ajm.2015.0019
- M. Artin and J.-L. Verdier, Reflexive modules over rational double points, Math. Ann. 270 (1985), no. 1, 79–82. MR 769609, DOI 10.1007/BF01455531
- Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531. MR 816307, DOI 10.1090/S0002-9947-1986-0816307-7
- Maurice Auslander and Idun Reiten, Cohen-Macaulay modules for graded Cohen-Macaulay rings and their completions, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 21–31. MR 1015511, DOI 10.1007/978-1-4612-3660-3_{2}
- Maurice Auslander and Idun Reiten, The Cohen-Macaulay type of Cohen-Macaulay rings, Adv. in Math. 73 (1989), no. 1, 1–23. MR 979585, DOI 10.1016/0001-8708(89)90057-1
- Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French; Reprint of the 1989 English translation. MR 1727221
- Nathan Broomhead, Dimer models and Calabi-Yau algebras, Mem. Amer. Math. Soc. 215 (2012), no. 1011, viii+86. MR 2908565, DOI 10.1090/S0065-9266-2011-00617-9
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. MR 2249625, DOI 10.1016/j.aim.2005.06.003
- Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology, Mathematical Surveys and Monographs, vol. 262, American Mathematical Society, Providence, RI, [2021] ©2021. With appendices and an introduction by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar and Janina C. Letz. MR 4390795, DOI 10.1090/surv/262
- R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165–182. MR 877011, DOI 10.1007/BF01405096
- Ragnar-Olaf Buchweitz, Osamu Iyama, and Kota Yamaura, Tilting theory for Gorenstein rings in dimension one, Forum Math. Sigma 8 (2020), Paper No. e36, 37. MR 4120267, DOI 10.1017/fms.2020.28
- Ragnar-Olaf Buchweitz, Graham J. Leuschke, and Michel Van den Bergh, Non-commutative desingularization of determinantal varieties I, Invent. Math. 182 (2010), no. 1, 47–115. MR 2672281, DOI 10.1007/s00222-010-0258-7
- Igor Burban, Osamu Iyama, Bernhard Keller, and Idun Reiten, Cluster tilting for one-dimensional hypersurface singularities, Adv. Math. 217 (2008), no. 6, 2443–2484. MR 2397457, DOI 10.1016/j.aim.2007.10.007
- Hailong Dao, Eleonore Faber, and Colin Ingalls, Noncommutative (crepant) desingularizations and the global spectrum of commutative rings, Algebr. Represent. Theory 18 (2015), no. 3, 633–664. MR 3357942, DOI 10.1007/s10468-014-9510-y
- Laurent Demonet and Yu Liu, Quotients of exact categories by cluster tilting subcategories as module categories, J. Pure Appl. Algebra 217 (2013), no. 12, 2282–2297. MR 3057311, DOI 10.1016/j.jpaa.2013.03.007
- Eleonore Faber, Greg Muller, and Karen E. Smith, Non-commutative resolutions of toric varieties, Adv. Math. 351 (2019), 236–274. MR 3951483, DOI 10.1016/j.aim.2019.04.021
- Masahiro Futaki and Kazushi Ueda, Homological mirror symmetry for Brieskorn-Pham singularities, Selecta Math. (N.S.) 17 (2011), no. 2, 435–452. MR 2803848, DOI 10.1007/s00029-010-0055-6
- V. Ginzburg, Calabi-Yau algebras, arXiv:0612139.
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI 10.2969/jmsj/03020179
- Joseph Grant and Osamu Iyama, Higher preprojective algebras, Koszul algebras, and superpotentials, Compos. Math. 156 (2020), no. 12, 2588–2627. MR 4208897, DOI 10.1112/s0010437x20007538
- Lingyan Guo, Cluster tilting objects in generalized higher cluster categories, J. Pure Appl. Algebra 215 (2011), no. 9, 2055–2071. MR 2786597, DOI 10.1016/j.jpaa.2010.11.015
- Norihiro Hanihara, Auslander correspondence for triangulated categories, Algebra Number Theory 14 (2020), no. 8, 2037–2058. MR 4172701, DOI 10.2140/ant.2020.14.2037
- Norihiro Hanihara, Cluster categories of formal DG algebras and singularity categories, Forum Math. Sigma 10 (2022), Paper No. e35, 50. MR 4436593, DOI 10.1017/fms.2022.30
- Norihiro Hanihara, Morita theorem for hereditary Calabi-Yau categories, Adv. Math. 395 (2022), Paper No. 108092, 60. MR 4363587, DOI 10.1016/j.aim.2021.108092
- N. Hanihara and O. Iyama, Enhanced Auslander-Reiten duality and tilting theory for singularity categories, arXiv:2209.14090.
- N. Hanihara and O. Iyama, Silting-cluster tilting correspondences, in preparation.
- Dieter Happel, Udo Preiser, and Claus Michael Ringel, Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to $D\textrm {Tr}$-periodic modules, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 280–294. MR 607159
- Wahei Hara, Non-commutative crepant resolution of minimal nilpotent orbit closures of type A and Mukai flops, Adv. Math. 318 (2017), 355–410. MR 3689744, DOI 10.1016/j.aim.2017.08.010
- M. Herschend and O. Iyama, in preparation.
- Martin Herschend, Osamu Iyama, Hiroyuki Minamoto, and Steffen Oppermann, Representation theory of Geigle-Lenzing complete intersections, Mem. Amer. Math. Soc. 285 (2023), no. 1412, vii+141. MR 4580295, DOI 10.1090/memo/1412
- Akihiro Higashitani and Yusuke Nakajima, Conic divisorial ideals of Hibi rings and their applications to non-commutative crepant resolutions, Selecta Math. (N.S.) 25 (2019), no. 5, Paper No. 78, 25. MR 4036504, DOI 10.1007/s00029-019-0523-6
- Yuki Hirano and Genki Ouchi, Derived factorization categories of non-Thom-Sebastiani-type sums of potentials, Proc. Lond. Math. Soc. (3) 126 (2023), no. 1, 1–75. MR 4535018, DOI 10.1112/plms.12488
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- Osamu Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50. MR 2298819, DOI 10.1016/j.aim.2006.06.002
- Osamu Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82. MR 2298820, DOI 10.1016/j.aim.2006.06.003
- Osamu Iyama, Tilting Cohen-Macaulay representations, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 125–162. MR 3966760
- Osamu Iyama and Ryo Takahashi, Tilting and cluster tilting for quotient singularities, Math. Ann. 356 (2013), no. 3, 1065–1105. MR 3063907, DOI 10.1007/s00208-012-0842-9
- Osamu Iyama and Michael Wemyss, Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math. 197 (2014), no. 3, 521–586. MR 3251829, DOI 10.1007/s00222-013-0491-y
- Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669, DOI 10.1007/s00222-007-0096-4
- V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), no. 1, 57–92. MR 557581, DOI 10.1007/BF01403155
- Hiroshige Kajiura, Kyoji Saito, and Atsushi Takahashi, Matrix factorization and representations of quivers. II. Type $ADE$ case, Adv. Math. 211 (2007), no. 1, 327–362. MR 2313537, DOI 10.1016/j.aim.2006.08.005
- Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581. MR 2184464, DOI 10.4171/dm/199
- Bernhard Keller, Deformed Calabi-Yau completions, J. Reine Angew. Math. 654 (2011), 125–180. With an appendix by Michel Van den Bergh. MR 2795754, DOI 10.1515/CRELLE.2011.031
- Bernhard Keller and Idun Reiten, Acyclic Calabi-Yau categories, Compos. Math. 144 (2008), no. 5, 1332–1348. With an appendix by Michel Van den Bergh. MR 2457529, DOI 10.1112/S0010437X08003540
- Bernhard Keller, Daniel Murfet, and Michel Van den Bergh, On two examples by Iyama and Yoshino, Compos. Math. 147 (2011), no. 2, 591–612. MR 2776613, DOI 10.1112/S0010437X10004902
- Dirk Kussin, Helmut Lenzing, and Hagen Meltzer, Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math. 237 (2013), 194–251. MR 3028577, DOI 10.1016/j.aim.2013.01.006
- Graham J. Leuschke, Non-commutative crepant resolutions: scenes from categorical geometry, Progress in commutative algebra 1, de Gruyter, Berlin, 2012, pp. 293–361. MR 2932589
- Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, American Mathematical Society, Providence, RI, 2012. MR 2919145, DOI 10.1090/surv/181
- Hiroyuki Minamoto and Kota Yamaura, The Happel functor and homologically well-graded Iwanaga-Gorenstein algebras, J. Algebra 565 (2021), 441–488. MR 4150804, DOI 10.1016/j.jalgebra.2020.08.021
- Yusuke Nakajima, On 2-representation infinite algebras arising from dimer models, Q. J. Math. 73 (2022), no. 4, 1517–1553. MR 4520226, DOI 10.1093/qmath/haac016
- D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 227–248. MR 2101296
- Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 503–531. MR 2641200, DOI 10.1007/978-0-8176-4747-6_{1}6
- Dmitri Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), no. 1, 206–217. MR 2735755, DOI 10.1016/j.aim.2010.06.016
- Yann Palu, Grothendieck group and generalized mutation rule for 2-Calabi-Yau triangulated categories, J. Pure Appl. Algebra 213 (2009), no. 7, 1438–1449. MR 2497588, DOI 10.1016/j.jpaa.2008.12.012
- C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), no. 2, 199–224 (German). MR 576602, DOI 10.1007/BF02566682
- J. C. Rosales and P. A. García-Sánchez, Numerical semigroups, Developments in Mathematics, vol. 20, Springer, New York, 2009. MR 2549780, DOI 10.1007/978-1-4419-0160-6
- Špela Špenko and Michel Van den Bergh, Non-commutative resolutions of quotient singularities for reductive groups, Invent. Math. 210 (2017), no. 1, 3–67. MR 3698338, DOI 10.1007/s00222-017-0723-7
- Špela Špenko and Michel Van den Bergh, Non-commutative crepant resolutions for some toric singularities I, Int. Math. Res. Not. IMRN 21 (2020), 8120–8138. MR 4176847, DOI 10.1093/imrn/rnaa006
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- Kazushi Ueda, Triangulated categories of Gorenstein cyclic quotient singularities, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2745–2747. MR 2399037, DOI 10.1090/S0002-9939-08-09470-7
- Michel Van den Bergh, Cohen-Macaulayness of semi-invariants for tori, Trans. Amer. Math. Soc. 336 (1993), no. 2, 557–580. MR 1087057, DOI 10.1090/S0002-9947-1993-1087057-3
- Michel van den Bergh, Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 749–770. MR 2077594
- Michel Van den Bergh, Noncommutative crepant resolutions, an overview, ICM—International Congress of Mathematicians. Vol. 2. Plenary lectures, EMS Press, Berlin, [2023] ©2023, pp. 1354–1391. MR 4680283
- Michael Wemyss, Noncommutative resolutions, Noncommutative algebraic geometry, Math. Sci. Res. Inst. Publ., vol. 64, Cambridge Univ. Press, New York, 2016, pp. 239–306. MR 3618475
- Jie Xiao and Bin Zhu, Locally finite triangulated categories, J. Algebra 290 (2005), no. 2, 473–490. MR 2153264, DOI 10.1016/j.jalgebra.2005.05.011
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937, DOI 10.1017/CBO9780511600685
Bibliographic Information
- Norihiro Hanihara
- Affiliation: Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Address at time of publication: Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
- MR Author ID: 1323831
- Email: hanihara@math.kyushu-u.ac.jp, norihiro.hanihara@ipmu.jp
- Received by editor(s): June 17, 2023
- Received by editor(s) in revised form: May 13, 2024, and July 18, 2024
- Published electronically: January 30, 2025
- Additional Notes: This work was supported by JSPS KAKENHI Grant Numbers JP22J00649/JP22K00737
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 13C14, 14A22, 16E35, 16G60, 16S38, 18G80
- DOI: https://doi.org/10.1090/tran/9288