Effective flipping, skewering and rank rigidity for cubulated groups with factor systems
HTML articles powered by AMS MathViewer
- by Abdul Zalloum;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9318
- Published electronically: June 18, 2025
- PDF | Request permission
Abstract:
Relying on work of Caprace and Sageev [Geom. Funct. Anal. 21 (2011), pp. 851–891], we provide an effective form of rank rigidity in the context of groups virtually acting freely cocompactly on a CAT(0) cube complex with a factor system. We accomplish this by exhibiting a special pair of hyperplanes that can be skewered uniformly quickly. Furthermore, for virtually compact special groups, we prove an effective omnibus theorem and provide a trichotomy implying a strong form of an effective Tits alternative. More generally, we provide a recipe for producing short Morse elements generating free stable subgroups in any virtually torsion-free hierarchically hyperbolic group (HHG) which recovers Mangahas’ work [Amer. J. Math. 135 (2013), pp. 1087–1116] and provides an effective rank-rigidity dichotomy in the context of HHGs via Durham-Hagen-Sisto [Geom. Topol. 21 (2017), pp. 3659–3758]. Part of our analysis involves showing that Caprace-Sageev’s cubical tools of flipping and skewering can be applied to any HHG using the notion of a curtain recently introduced by Petyt, Spriano and the author in [Adv. Math. 450 (2024), p. 66] and Zalloum [Injectivity, cubical approximations and equivariant wall structures beyond cat(0) cube complexes, 2023]. Indeed, our route to producing a short Morse element proceeds by exhibiting a special pair of curtains in the underlying HHG that can be skewered uniformly quickly.References
- J. W. Anderson, J. Aramayona, and K. J. Shackleton, Uniformly exponential growth and mapping class groups of surfaces, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 1–6. MR 2342801, DOI 10.1090/conm/432/08294
- Carolyn Abbott, Jason Behrstock, and Matthew Gentry Durham, Largest acylindrical actions and stability in hierarchically hyperbolic groups, Trans. Amer. Math. Soc. Ser. B 8 (2021), 66–104. With an appendix by Daniel Berlyne and Jacob Russell. MR 4215647, DOI 10.1090/btran/50
- Carolyn Abbott, Jason Behrstock, and Jacob Russell, Structure invariant properties of the hierarchically hyperbolic boundary, 2022.
- Carolyn Abbott, Mark Hagen, Harry Petyt, and Abdul Zalloum, Uniform undistortion from barycentres, and applications to hierarchically hyperbolic groups, 2023.
- Carolyn Abbott, Thomas Ng, Davide Spriano, Radhika Gupta, and Harry Petyt, Hierarchically hyperbolic groups and uniform exponential growth, 2019.
- A. Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar. 38 (1981), no. 1-4, 19–28. MR 634562, DOI 10.1007/BF01917515
- Werner Ballmann and Sergei Buyalo, Periodic rank one geodesics in Hadamard spaces, Geometric and probabilistic structures in dynamics, Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 19–27. MR 2478464, DOI 10.1090/conm/469/09159
- G. Besson, G. Courtois, and S. Gallot, Uniform growth of groups acting on Cartan-Hadamard spaces, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 5, 1343–1371. MR 2825167, DOI 10.4171/JEMS/283
- Edgar A. Bering IV, Uniform independence for Dehn twist automorphisms of a free group, Proc. Lond. Math. Soc. (3) 118 (2019), no. 5, 1115–1152. MR 3946718, DOI 10.1112/plms.12208
- Jason Behrstock, Mark Hagen, Alexandre Martin, and Alessandro Sisto, A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups, Preprint arXiv:2005.00567, 2020.
- Jason Behrstock, Mark F. Hagen, and Alessandro Sisto, Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups, Geom. Topol. 21 (2017), no. 3, 1731–1804. MR 3650081, DOI 10.2140/gt.2017.21.1731
- Jason Behrstock, Mark Hagen, and Alessandro Sisto, Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, Pacific J. Math. 299 (2019), no. 2, 257–338. MR 3956144, DOI 10.2140/pjm.2019.299.257
- Jason Behrstock, Mark F. Hagen, and Alessandro Sisto, Quasiflats in hierarchically hyperbolic spaces, Duke Math. J. 170 (2021), no. 5, 909–996. MR 4255047, DOI 10.1215/00127094-2020-0056
- Marc Burger and Shahar Mozes, Finitely presented simple groups and products of trees, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 7, 747–752 (English, with English and French summaries). MR 1446574, DOI 10.1016/S0764-4442(97)86938-8
- Brian H. Bowditch, Coarse median spaces and groups, Pacific J. Math. 261 (2013), no. 1, 53–93. MR 3037559, DOI 10.2140/pjm.2013.261.53
- Federico Berlai and Bruno Robbio, A refined combination theorem for hierarchically hyperbolic groups, Groups Geom. Dyn. 14 (2020), no. 4, 1127–1203. MR 4186470, DOI 10.4171/ggd/576
- Daniel Berlyne and Jacob Russell, Hierarchical hyperbolicity of graph products, Groups Geom. Dyn. 16 (2022), no. 2, 523–580. MR 4502615, DOI 10.4171/ggd/652
- Pierre-Emmanuel Caprace, Finite and infinite quotients of discrete and indiscrete groups, Groups St Andrews 2017 in Birmingham, London Math. Soc. Lecture Note Ser., vol. 455, Cambridge Univ. Press, Cambridge, 2019, pp. 16–69. MR 3931408
- Pierre-Emmanuel Caprace and Michah Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011), no. 4, 851–891. MR 2827012, DOI 10.1007/s00039-011-0126-7
- Ruth Charney and Harold Sultan, Contracting boundaries of $\rm CAT(0)$ spaces, J. Topol. 8 (2015), no. 1, 93–117. MR 3339446, DOI 10.1112/jtopol/jtu017
- Spencer Dowdall, Matthew G Durham, Christopher J Leininger, and Alessandro Sisto, Extensions of veech groups ii: Hierarchical hyperbolicity and quasi-isometric rigidity, Preprint arXiv:2111.00685, 2021.
- Spencer Dowdall, Matthew G. Durham, Christopher J. Leininger, and Alessandro Sisto, Extensions of Veech groups I: A hyperbolic action, J. Topol. 16 (2023), no. 2, 757–805. MR 4637976, DOI 10.1112/topo.12296
- F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152. MR 3589159, DOI 10.1090/memo/1156
- Matthew Gentry Durham, Mark F. Hagen, and Alessandro Sisto, Boundaries and automorphisms of hierarchically hyperbolic spaces, Geom. Topol. 21 (2017), no. 6, 3659–3758. MR 3693574, DOI 10.2140/gt.2017.21.3659
- Matthew Gentry Durham, Mark F. Hagen, and Alessandro Sisto, Correction to the article Boundaries and automorphisms of hierarchically hyperbolic spaces, Geom. Topol. 24 (2020), no. 2, 1051–1073. MR 4153656, DOI 10.2140/gt.2020.24.1051
- Matthew G. Durham, Yair N. Minsky, and Alessandro Sisto, Stable cubulations, bicombings, and barycenters, Geom. Topol. 27 (2023), no. 6, 2383–2478. MR 4634751, DOI 10.2140/gt.2023.27.2383
- Matthew Gentry Durham and Samuel J. Taylor, Convex cocompactness and stability in mapping class groups, Algebr. Geom. Topol. 15 (2015), no. 5, 2839–2859. MR 3426695, DOI 10.2140/agt.2015.15.2839
- Matthew Gentry Durham and Samuel J. Taylor, Convex cocompactness and stability in mapping class groups, Algebr. Geom. Topol. 15 (2015), no. 5, 2839–2859. MR 3426695, DOI 10.2140/agt.2015.15.2839
- Mathew Durham, Recubulating hulls, in preparation, 2023.
- Matthew Gentry Durham and Abdul Zalloum, The geometry of genericity in mapping class groups and Teichmüller spaces via CAT(0) cube complexes, Preprint arXiv:2207.06516, 2022.
- Eduard Einstein, Hierarchies for relatively hyperbolic virtually special groups, 2019.
- Alex Eskin, Shahar Mozes, and Hee Oh, On uniform exponential growth for linear groups, Invent. Math. 160 (2005), no. 1, 1–30. MR 2129706, DOI 10.1007/s00222-004-0378-z
- Benson Farb and Lee Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002), 91–152. MR 1914566, DOI 10.2140/gt.2002.6.91
- Koji Fujiwara and Zlil Sela, The rates of growth in a hyperbolic group, 2020.
- Koji Fujiwara, Subgroups generated by two pseudo-Anosov elements in a mapping class group. I. Uniform exponential growth, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 283–296. MR 2509713, DOI 10.2969/aspm/05210283
- Koji Fujiwara, Subgroups generated by two pseudo-Anosov elements in a mapping class group. II. Uniform bound on exponents, Trans. Amer. Math. Soc. 367 (2015), no. 6, 4377–4405. MR 3324932, DOI 10.1090/S0002-9947-2014-06292-2
- Koji Fujiwara, The rates of growth in an acylindrically hyperbolic group, 2021.
- Anthony Genevois, Hyperbolic diagram groups are free, Geom. Dedicata 188 (2017), 33–50. MR 3639623, DOI 10.1007/s10711-016-0203-z
- Anthony Genevois, Median graphs, in preparation, available at the Genevois’ website, 2023.
- Radhika Gupta, Kasia Jankiewicz, and Thomas Ng, Groups acting on cat(0) cube complexes with uniform exponential growth, 2020.
- A. J. Goldman and C. J. Witzgall, A localization theorem for optimal facility placement, Transportation Sci. 4 (1970), 406–409. MR 269285, DOI 10.1287/trsc.4.4.406
- Thomas Haettel, Virtually cocompactly cubulated Artin-Tits groups, Int. Math. Res. Not. IMRN 4 (2021), 2919–2961. MR 4218342, DOI 10.1093/imrn/rnaa013
- Frédéric Haglund, Isometries of $CAT(0)$ cube complexes are semi-simple, Ann. Math. Qué. 47 (2023), no. 2, 249–261 (English, with English and French summaries). MR 4645691, DOI 10.1007/s40316-021-00186-2
- Mark F. Hagen, Weak hyperbolicity of cube complexes and quasi-arboreal groups, J. Topol. 7 (2014), no. 2, 385–418. MR 3217625, DOI 10.1112/jtopol/jtt027
- Mark Hagen, Large facing tuples and a strengthened sector lemma, Tunis. J. Math. 4 (2022), no. 1, 55–86. MR 4401788, DOI 10.2140/tunis.2022.4.55
- Thomas Haettel, Nima Hoda, and Harry Petyt, Coarse injectivity, hierarchical hyperbolicity and semihyperbolicity, Geom. Topol. 27 (2023), no. 4, 1587–1633. MR 4602421, DOI 10.2140/gt.2023.27.1587
- Mark Hagen, Alexandre Martin, and Alessandro Sisto, Extra-large type Artin groups are hierarchically hyperbolic, Math. Ann. 388 (2024), no. 1, 867–938. MR 4693949, DOI 10.1007/s00208-022-02523-4
- Mark Hagen, Jacob Russell, Alessandro Sisto, and Davide Spriano, Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms, Ann. Inst. Fourier (2024), 1–60.
- Mark F. Hagen and Tim Susse, On hierarchical hyperbolicity of cubical groups, Israel J. Math. 236 (2020), no. 1, 45–89. MR 4093881, DOI 10.1007/s11856-020-1967-2
- Sam Hughes, Lattices in a product of trees, hierarchically hyperbolic groups and virtual torsion-freeness, Bull. Lond. Math. Soc. 54 (2022), no. 4, 1413–1419. MR 4488315, DOI 10.1112/blms.12637
- Frédéric Haglund and Daniel T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), no. 5, 1551–1620. MR 2377497, DOI 10.1007/s00039-007-0629-4
- Alice Kerr, Product set growth in mapping class groups, 2021.
- Bruce Kleiner and Bernhard Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197 (1998). MR 1608566
- Robert Kropholler, Rylee Alanza Lyman, and Thomas Ng, Extensions of hyperbolic groups have locally uniform exponential growth, 2020.
- Malik Koubi, Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 5, 1441–1453 (French, with English and French summaries). MR 1662255, DOI 10.5802/aif.1661
- Aditi Kar and Michah Sageev, Uniform exponential growth for CAT(0) square complexes, Algebr. Geom. Topol. 19 (2019), no. 3, 1229–1245. MR 3954280, DOI 10.2140/agt.2019.19.1229
- Johanna Mangahas, Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal. 19 (2010), no. 5, 1468–1480. MR 2585580, DOI 10.1007/s00039-009-0038-y
- Johanna Mangahas, A recipe for short-word pseudo-Anosovs, Amer. J. Math. 135 (2013), no. 4, 1087–1116. MR 3086070, DOI 10.1353/ajm.2013.0037
- Marissa Miller, Stable subgroups of the genus two handlebody group, Preprint arXiv:2009.05067, 2020.
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR 1791145, DOI 10.1007/PL00001643
- Harry Petyt, Mapping class groups are quasicubical, Preprint arXiv:2112.10681, 2021.
- Harry Petyt and Davide Spriano, Unbounded domains in hierarchically hyperbolic groups, Groups Geom. Dyn. 17 (2023), no. 2, 479–500. MR 4584673, DOI 10.4171/ggd/706
- Harry Petyt, Davide Spriano, and Abdul Zalloum, Hyperbolic models for $\textrm {CAT}(0)$ spaces, Adv. Math. 450 (2024), Paper No. 109742, 66. MR 4753310, DOI 10.1016/j.aim.2024.109742
- Jacob Samuel Russell-Madonia, Convexity and Curvature in Hierarchically Hyperbolic Spaces, ProQuest LLC, Ann Arbor, MI, 2020. Thesis (Ph.D.)–City University of New York. MR 4119879
- Jacob Russell, Davide Spriano, and Hung Cong Tran, Convexity in hierarchically hyperbolic spaces, Algebr. Geom. Topol. 23 (2023), no. 3, 1167–1248. MR 4598806, DOI 10.2140/agt.2023.23.1167
- Jacob Russell, Extensions of multicurve stabilizers are hierarchically hyperbolic, Preprint arXiv:2107.14116, 2021.
- Sam Shepherd, A cubulation with no factor system, 2022.
- Alessandro Sisto, What is a hierarchically hyperbolic space?, Beyond hyperbolicity, London Math. Soc. Lecture Note Ser., vol. 454, Cambridge Univ. Press, Cambridge, 2019, pp. 117–148. MR 3966608
- Alessandro Sisto, Contracting elements and random walks, J. Reine Angew. Math. 742 (2018), 79–114. MR 3849623, DOI 10.1515/crelle-2015-0093
- Peter B. Shalen and Philip Wagreich, Growth rates, $Z_p$-homology, and volumes of hyperbolic $3$-manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 895–917. MR 1156298, DOI 10.1090/S0002-9947-1992-1156298-8
- Hung Cong Tran, On strongly quasiconvex subgroups, Geom. Topol. 23 (2019), no. 3, 1173–1235. MR 3956891, DOI 10.2140/gt.2019.23.1173
- Motiejus Valiunas, Acylindrical hyperbolicity of groups acting on quasi-median graphs and equations in graph products, Groups Geom. Dyn. 15 (2021), no. 1, 143–195. MR 4235751, DOI 10.4171/ggd/595
- Abdul Zalloum, Injectivity, cubical approximations and equivariant wall structures beyond cat(0) cube complexes, 2023.
Bibliographic Information
- Abdul Zalloum
- Affiliation: Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China, Suzhou Research Institute of HIT, Suzhou 215104, China
- MR Author ID: 1504696
- Email: zalloum.abdul@gmail.com
- Received by editor(s): January 13, 2024
- Received by editor(s) in revised form: September 3, 2024, and September 4, 2024
- Published electronically: June 18, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 20F65
- DOI: https://doi.org/10.1090/tran/9318