Some equations involving the gamma function
HTML articles powered by AMS MathViewer
- by Sebastian Eterović and Adele Padgett;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9361
- Published electronically: January 21, 2025
- HTML | PDF | Request permission
Abstract:
Let $V\subseteq \mathbb {C}^{2n}$ be an algebraic variety with no constant coordinates and with a dominant projection onto the first $n$ coordinates. We show that the intersection of $V$ with the graph of the $\Gamma$ function is Zariski dense in $V$. Our method gives an explicit description of the distribution of these intersection points, and can be adapted for some other functions.References
- Lars Ahlfors, Complex analysis—an introduction to the theory of analytic functions of one complex variable, 3rd ed., AMS Chelsea Publishing, Providence, RI, [2021] ©2021. Reprint of the 1978 original [ 0510197]. MR 4506522
- Vahagn Aslanyan, Adequate predimension inequalities in differential fields, Ann. Pure Appl. Logic 173 (2022), no. 1, Paper No. 103030, 42. MR 4309976, DOI 10.1016/j.apal.2021.103030
- Vahagn Aslanyan, Sebastian Eterović, and Jonathan Kirby, Differential existential closedness for the $j$-function, Proc. Amer. Math. Soc. 149 (2021), no. 4, 1417–1429. MR 4242301, DOI 10.1090/proc/15333
- Vahagn Aslanyan, Sebastian Eterović, and Vincenzo Mantova, Equations involving the modular $j$-function and its derivatives, 2023, arXiv:2312.09974.
- Vahagn Aslanyan and Jonathan Kirby, Blurrings of the $J$-function, Q. J. Math. 73 (2022), no. 2, 461–475. MR 4439794, DOI 10.1093/qmath/haab037
- Vahagn Aslanyan, Jonathan Kirby, and Vincenzo Mantova, A geometric approach to some systems of exponential equations, Int. Math. Res. Not. IMRN 5 (2023), 4046–4081. MR 4565663, DOI 10.1093/imrn/rnab340
- James Ax, On Schanuel’s conjectures, Ann. of Math. (2) 93 (1971), 252–268. MR 277482, DOI 10.2307/1970774
- Martin Bays and Jonathan Kirby, Pseudo-exponential maps, variants, and quasiminimality, Algebra Number Theory 12 (2018), no. 3, 493–549. MR 3815305, DOI 10.2140/ant.2018.12.493
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- W. D. Brownawell and D. W. Masser, Zero estimates with moving targets, J. Lond. Math. Soc. (2) 95 (2017), no. 2, 441–454. MR 3656276, DOI 10.1112/jlms.12014
- P. D’Aquino, A. Fornasiero, and G. Terzo, Generic solutions of equations with iterated exponentials, Trans. Amer. Math. Soc. 370 (2018), no. 2, 1393–1407. MR 3729505, DOI 10.1090/tran/7206
- Lou van den Dries and Patrick Speissegger, The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3) 81 (2000), no. 3, 513–565. MR 1781147, DOI 10.1112/S0024611500012648
- Sebastian Eterović, Generic solutions of equations involving the modular $j$-function, Math. Ann. (2025). DOI 10.1007/s00208-024-03082-6
- Sebastian Eterović and Sebastián Herrero, Solutions of equations involving the modular $j$ function, Trans. Amer. Math. Soc. 374 (2021), no. 6, 3971–3998. MR 4251219, DOI 10.1090/tran/8244
- Sebastian Eterović and Roy Zhao, Algebraic varieties and automorphic functions, 2021, arXiv:2107.10392.
- Francesco Gallinaro, Solving systems of equations of raising-to-powers type, Israel J. Math. (2023), arXiv:2103.15675.
- Francesco Paolo Gallinaro, Exponential sums equations and tropical geometry, Selecta Math. (N.S.) 29 (2023), no. 4, Paper No. 49, 41. MR 4610958, DOI 10.1007/s00029-023-00853-y
- Francesco Paolo Gallinaro, On some systems of equations in abelian varieties, Int. Math. Res. Not. IMRN 9 (2024), 7208–7233. MR 4742818, DOI 10.1093/imrn/rnad122
- Sanoli Gun, M. Ram Murty, and Purusottam Rath, Transcendental nature of special values of $L$-functions, Canad. J. Math. 63 (2011), no. 1, 136–152. MR 2779135, DOI 10.4153/CJM-2010-078-9
- Serge Lang, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 214547
- Bao Qin Li and Jörn Steuding, Fixed points of the Riemann zeta function and Dirichlet series, Monatsh. Math. 198 (2022), no. 3, 581–589. MR 4439851, DOI 10.1007/s00605-022-01709-x
- Vincenzo Mantova and David Masser, Polynomial-exponential equations—some new cases of solvability, Proc. Lond. Math. Soc. (3) 129 (2024), no. 4, Paper No. e12627, 26. MR 4805263, DOI 10.1112/plms.12627
- David Marker, A remark on Zilber’s pseudoexponentiation, J. Symbolic Logic 71 (2006), no. 3, 791–798. MR 2250821, DOI 10.2178/jsl/1154698577
- Michael McQuillan, Division points on semi-abelian varieties, Invent. Math. 120 (1995), no. 1, 143–159. MR 1323985, DOI 10.1007/BF01241125
- Jonathan Pila, O-minimality and the André-Oort conjecture for $\Bbb C^n$, Ann. of Math. (2) 173 (2011), no. 3, 1779–1840. MR 2800724, DOI 10.4007/annals.2011.173.3.11
- Jonathan Pila et al. Canonical heights on Shimura varieties and the André-Oort conjecture, 2021, arXiv:2109.08788.
- M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), no. 1, 207–233 (French). MR 688265, DOI 10.1007/BF01393342
- Reinhold Remmert, Classical topics in complex function theory, Graduate Texts in Mathematics, vol. 172, Springer-Verlag, New York, 1998. Translated from the German by Leslie Kay. MR 1483074, DOI 10.1007/978-1-4757-2956-6
- B. V. Shabat, Introduction to complex analysis. Part II, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992. Functions of several variables; Translated from the third (1985) Russian edition by J. S. Joel. MR 1192135, DOI 10.1090/mmono/110
- Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton Lectures in Analysis, vol. 2, Princeton University Press, Princeton, NJ, 2003. MR 1976398
- Jacob Tsimerman, The André-Oort conjecture for $\cal A_g$, Ann. of Math. (2) 187 (2018), no. 2, 379–390. MR 3744855, DOI 10.4007/annals.2018.187.2.2
- Mitsuru Uchiyama, The principal inverse of the gamma function, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1343–1348. MR 2869117, DOI 10.1090/S0002-9939-2011-11023-2
- Boris Zilber, Exponential sums equations and the Schanuel conjecture, J. London Math. Soc. (2) 65 (2002), no. 1, 27–44. MR 1875133, DOI 10.1112/S0024610701002861
- B. Zilber, Pseudo-exponentiation on algebraically closed fields of characteristic zero, Ann. Pure Appl. Logic 132 (2005), no. 1, 67–95. MR 2102856, DOI 10.1016/j.apal.2004.07.001
Bibliographic Information
- Sebastian Eterović
- Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- MR Author ID: 1277252
- ORCID: 0000-0001-6724-5887
- Email: s.eterovic@leeds.ac.uk
- Adele Padgett
- Affiliation: Kurt Gödel Research Center, Universität Wien, 1090 Wien, Austria
- ORCID: 0000-0002-2679-0632
- Email: adele.lee.padgett@univie.ac.at
- Received by editor(s): January 16, 2024
- Received by editor(s) in revised form: June 27, 2024, and October 19, 2024
- Published electronically: January 21, 2025
- Additional Notes: The first author was supported by EPSRC fellowship EP/T018461/1. The second author was supported by the Fields Institute.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 30C15, 33B15, 30D35, 32A60
- DOI: https://doi.org/10.1090/tran/9361