Tingley’s problem for positive unit spheres of operator algebras and diametral relations
HTML articles powered by AMS MathViewer
- by Chi-Wai Leung, Chi-Keung Ng and Ngai-Ching Wong;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9362
- Published electronically: January 30, 2025
- HTML | PDF | Request permission
Abstract:
We answer, in the affirmative, Tingley’s problem for positive unit spheres of (complex) von Neumann algebras. More precisely, let $\Lambda : \mathrm {S}_{\mathcal {A}^+} \to \mathrm {S}_{\mathcal {B}^+}$ be a bijection between the sets of positive norm-one elements of two von Neumann algebras $\mathcal {A}$ and $\mathcal {B}$. We show that if $\Lambda$ is an isometry, then it extends to a bijective complex linear Jordan $^*$-isomorphism from $\mathcal {A}$ onto $\mathcal {B}$. In the case in which $\Lambda$ satisfies the weaker assumption of preserving pairs of points at diametrical distance, namely, \begin{equation*} \|\Lambda (a) - \Lambda (b)\| =1 \quad \text {if and only if} \quad \|a-b\| = 1 \quad (a,b\in \mathrm {S}_{\mathcal {A}^+}), \end{equation*} one can still conclude that $\mathcal {A}$ is complex linear Jordan $^*$-isomorphic to $\mathcal {B}$.
On our way, we also show that if there is an order isomorphism $\Theta :\mathrm {P}_\mathcal {A}\to \mathrm {P}_\mathcal {B}$ between the projection lattices of $\mathcal {A}$ and $\mathcal {B}$ that preserves pairs of points at diametrical distance, that is, \begin{equation*} \|\Theta (p) - \Theta (q)\| =1 \quad \text {if and only if} \quad \|p-q\| = 1\quad (p,q\in \mathrm {P}_\mathcal {A}), \end{equation*} then $\mathcal {A}$ and $\mathcal {B}$ are complex linear Jordan $^*$-isomorphic. If, in addition, either $\mathcal {A}$ has no type $\mathbf {I}_2$ summand, or $\Theta$ is an isometry, then $\Theta$ extends to a complex linear Jordan $^*$-isomorphism from $\mathcal {A}$ onto $\mathcal {B}$.
Actually, the above results are proved in the slightly more general situation that $\mathcal {A}$ and $\mathcal {B}$ are $AW^*$-algebras.
References
- Sterling K. Berberian, Baer *-rings, Die Grundlehren der mathematischen Wissenschaften, Band 195, Springer-Verlag, New York-Berlin, 1972. MR 429975, DOI 10.1007/978-3-642-15071-5
- Fernanda Botelho, James Jamison, and Lajos Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), no. 10, 2226–2238. MR 3091813, DOI 10.1016/j.jfa.2013.07.017
- Matej Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), no. 1, 218–228. MR 1029414, DOI 10.1016/0021-8693(89)90285-8
- Lixin Cheng and Yunbai Dong, On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl. 377 (2011), no. 2, 464–470. MR 2769149, DOI 10.1016/j.jmaa.2010.11.025
- María Cueto-Avellaneda and Antonio M. Peralta, Metric characterisation of unitaries in $\rm JB^*$-algebras, Mediterr. J. Math. 17 (2020), no. 4, Paper No. 124, 21. MR 4119511, DOI 10.1007/s00009-020-01556-w
- GuangGui Ding, On isometric extension problem between two unit spheres, Sci. China Ser. A 52 (2009), no. 10, 2069–2083. MR 2550266, DOI 10.1007/s11425-009-0156-x
- Chun Ding and Chi-Keung Ng, Ortho-sets and Gelfand spectra, J. Phys. A 54 (2021), no. 29, Paper No. 295301, 20. MR 4282970, DOI 10.1088/1751-8121/ac070b
- H. A. Dye, On the geometry of projections in certain operator algebras, Ann. of Math. (2) 61 (1955), 73–89. MR 66568, DOI 10.2307/1969620
- Francisco J. Fernández-Polo and Antonio M. Peralta, Low rank compact operators and Tingley’s problem, Adv. Math. 338 (2018), 1–40. MR 3861700, DOI 10.1016/j.aim.2018.08.018
- Francisco J. Fernández-Polo and Antonio M. Peralta, On the extension of isometries between the unit spheres of a $\rm C^*$-algebra and $B(H)$, Trans. Amer. Math. Soc. Ser. B 5 (2018), 63–80. MR 3766398, DOI 10.1090/btran/21
- Francisco J. Fernández-Polo and Antonio M. Peralta, On the extension of isometries between the unit spheres of von Neumann algebras, J. Math. Anal. Appl. 466 (2018), no. 1, 127–143. MR 3818108, DOI 10.1016/j.jmaa.2018.05.062
- György Pál Gehér and Peter emrl, Isometries of Grassmann spaces, J. Funct. Anal. 270 (2016), no. 4, 1585–1601. MR 3447720, DOI 10.1016/j.jfa.2015.11.018
- György Pál Gehér and Peter emrl, Isometries of Grassmann spaces, II, Adv. Math. 332 (2018), 287–310. MR 3810254, DOI 10.1016/j.aim.2018.05.012
- Jan Hamhalter, Dye’s theorem and Gleason’s theorem for $AW^*$-algebras, J. Math. Anal. Appl. 422 (2015), no. 2, 1103–1115. MR 3269502, DOI 10.1016/j.jmaa.2014.09.040
- Vladimir Kadets and Miguel Martín, Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces, J. Math. Anal. Appl. 396 (2012), no. 2, 441–447. MR 2961236, DOI 10.1016/j.jmaa.2012.06.031
- Richard V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325–338. MR 43392, DOI 10.2307/1969534
- Richard V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. (2) 56 (1952), 494–503. MR 51442, DOI 10.2307/1969657
- Irving Kaplansky, Algebras of type $\textrm {I}$, Ann. of Math. (2) 56 (1952), 460–472. MR 50182, DOI 10.2307/1969654
- Chi-Wai Leung, Chi-Keung Ng, and Ngai-Ching Wong, The positive contractive part of a noncommutative $L^p$-space is a complete Jordan invariant, Linear Algebra Appl. 519 (2017), 102–110. MR 3606263, DOI 10.1016/j.laa.2016.12.033
- Chi-Wai Leung, Chi-Keung Ng, and Ngai-Ching Wong, On a variant of Tingley’s problem for some function spaces, J. Math. Anal. Appl. 496 (2021), no. 1, Paper No. 124800, 16. MR 4186678, DOI 10.1016/j.jmaa.2020.124800
- Xiao Qi Lu and Chi-Keung Ng, Order type Tingley’s problem for type $I$ finite von Neumann algebras, J. Math. Anal. Appl. 533 (2024), no. 1, Paper No. 128019, 16. MR 4679387, DOI 10.1016/j.jmaa.2023.128019
- Piotr Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 367–371 (English, with Russian summary). MR 312214
- S. Mazur and S. Ulam, Sur les transformations isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.
- Lajos Molnár and Gergő Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), no. 1, 93–108. MR 2869675, DOI 10.1080/03081087.2011.570267
- Lajos Molnár and Werner Timmermann, Isometries of quantum states, J. Phys. A 36 (2003), no. 1, 267–273. MR 1959026, DOI 10.1088/0305-4470/36/1/318
- Michiya Mori, Tingley’s problem through the facial structure of operator algebras, J. Math. Anal. Appl. 466 (2018), no. 2, 1281–1298. MR 3825438, DOI 10.1016/j.jmaa.2018.06.050
- Michiya Mori, Isometries between projection lattices of von Neumann algebras, J. Funct. Anal. 276 (2019), no. 11, 3511–3528. MR 3944303, DOI 10.1016/j.jfa.2018.10.011
- Michiya Mori, Lattice isomorphisms between projection lattices of von Neumann algebras, Forum Math. Sigma 8 (2020), Paper No. e49, 19. MR 4176753, DOI 10.1017/fms.2020.53
- Michiya Mori and Narutaka Ozawa, Mankiewicz’s theorem and the Mazur-Ulam property for $\mathrm {C}^*$-algebras, Studia Math. 250 (2020), no. 3, 265–281. MR 4034747, DOI 10.4064/sm180727-14-11
- Gergő Nagy, Isometries on positive operators of unit norm, Publ. Math. Debrecen 82 (2013), no. 1, 183–192. MR 3375739, DOI 10.5486/PMD.2013.5396
- Gergő Nagy, Isometries of spaces of normalized positive operators under the operator norm, Publ. Math. Debrecen 92 (2018), no. 1-2, 243–254. MR 3764090, DOI 10.5486/pmd.2018.7967
- J. von Neumann, Continuous Geometry, Princeton Mathematical Series 25, Princeton, Princeton University Press, 1960.
- Chi-Keung Ng, Orthal sets, diametral relations and von Neumann algebras, preprint.
- Gert Kjaergȧrd Pedersen, Measure theory for $C^{\ast }$ algebras. II, Math. Scand. 22 (1968), 63–74. MR 246138, DOI 10.7146/math.scand.a-10871
- Antonio M. Peralta, Characterizing projections among positive operators in the unit sphere, Adv. Oper. Theory 3 (2018), no. 3, 731–744. MR 3795112, DOI 10.15352/aot.1804-1343
- Antonio M. Peralta, A survey on Tingley’s problem for operator algebras, Acta Sci. Math. (Szeged) 84 (2018), no. 1-2, 81–123. MR 3792767, DOI 10.14232/actasm-018-255-0
- Antonio M. Peralta, On the unit sphere of positive operators, Banach J. Math. Anal. 13 (2019), no. 1, 91–112. MR 3892338, DOI 10.1215/17358787-2018-0017
- Erling Størmer, On the Jordan structure of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 120 (1965), 438–447. MR 185463, DOI 10.1090/S0002-9947-1965-0185463-5
- Ryotaro Tanaka, Tingley’s problem on finite von Neumann algebras, J. Math. Anal. Appl. 451 (2017), no. 1, 319–326. MR 3619239, DOI 10.1016/j.jmaa.2017.02.013
- Daryl Tingley, Isometries of the unit sphere, Geom. Dedicata 22 (1987), no. 3, 371–378. MR 887583, DOI 10.1007/BF00147942
Bibliographic Information
- Chi-Wai Leung
- Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
- MR Author ID: 306606
- Email: cwleung@math.cuhk.edu.hk
- Chi-Keung Ng
- Affiliation: Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- MR Author ID: 340431
- Email: ckng@nankai.edu.cn, ckngmath@hotmail.com
- Ngai-Ching Wong
- Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; and School of Mathematical Sciences, Tiangong University, Tianjin 300387, People’s Republic of China
- MR Author ID: 266364
- ORCID: 0000-0002-1445-5335
- Email: wong@math.nsysu.edu.tw
- Received by editor(s): March 15, 2024
- Received by editor(s) in revised form: September 6, 2024, and September 17, 2024
- Published electronically: January 30, 2025
- Additional Notes: This work was partially supported by the Nankai Zhide Foundation and by Taiwan NSTC grant 112-2115-M-110-006-MY2
The corresponding author is Ngai-Ching Wong, wong@math.nsysu.edu.tw - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 46B40, 46L05, 47C15
- DOI: https://doi.org/10.1090/tran/9362