Zygmund dilations: bilinear analysis and commutator estimates
HTML articles powered by AMS MathViewer
- by Emil Airta, Kangwei Li and Henri Martikainen;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9366
- Published electronically: April 4, 2025
- HTML | PDF | Request permission
Abstract:
We develop both bilinear theory and commutator estimates in the context of entangled dilations, specifically Zygmund dilations $(x_1, x_2, x_3) \mapsto (\delta _1 x_1, \delta _2 x_2, \delta _1 \delta _2 x_3)$ in $\mathbb {R}^3$. We construct bilinear versions of recent dyadic multiresolution methods for Zygmund dilations and apply them to prove a paraproduct free $T1$ theorem for bilinear singular integrals invariant under Zygmund dilations. Independently, we prove linear commutator estimates even when the underlying singular integrals do not satisfy weighted estimates with Zygmund weights. This requires new paraproduct estimates.References
- Emil Airta, Henri Martikainen, and Emil Vuorinen, Product space singular integrals with mild kernel regularity, J. Geom. Anal. 32 (2022), no. 1, Paper No. 24, 49. MR 4349928, DOI 10.1007/s12220-021-00757-3
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extrapolation from $A_\infty$ weights and applications, J. Funct. Anal. 213 (2004), no. 2, 412–439. MR 2078632, DOI 10.1016/j.jfa.2003.09.002
- Javier Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 (2011), no. 6, 1886–1901. MR 2754896, DOI 10.1016/j.jfa.2010.12.015
- Xuan Thinh Duong, Ji Li, Yumeng Ou, Jill Pipher, and Brett Wick, Weighted estimates of singular integrals and commutators in the Zygmund dilation setting, arXiv:1905.00999 (2019).
- R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), no. 2, 337–369. MR 1439553, DOI 10.1353/ajm.1997.0011
- Loukas Grafakos and José María Martell, Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal. 14 (2004), no. 1, 19–46. MR 2030573, DOI 10.1007/BF02921864
- Loukas Grafakos and Seungly Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations 39 (2014), no. 6, 1128–1157. MR 3200091, DOI 10.1080/03605302.2013.822885
- Loukas Grafakos and Rodolfo H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124–164. MR 1880324, DOI 10.1006/aima.2001.2028
- Ana Grau de la Herrán and Tuomas Hytönen, Dyadic representation and boundedness of nonhomogeneous Calderón-Zygmund operators with mild kernel regularity, Michigan Math. J. 67 (2018), no. 4, 757–786. MR 3877436, DOI 10.1307/mmj/1531447374
- Yongsheng Han, Ji Li, Chin-Cheng Lin, and Chaoqiang Tan, Singular integrals associated with Zygmund dilations, J. Geom. Anal. 29 (2019), no. 3, 2410–2455. MR 3969431, DOI 10.1007/s12220-018-0081-8
- Irina Holmes, Stefanie Petermichl, and Brett D. Wick, Weighted little bmo and two-weight inequalities for Journé commutators, Anal. PDE 11 (2018), no. 7, 1693–1740. MR 3810470, DOI 10.2140/apde.2018.11.1693
- Tuomas P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2) 175 (2012), no. 3, 1473–1506. MR 2912709, DOI 10.4007/annals.2012.175.3.9
- Tuomas Hytönen, Kangwei Li, Henri Martikainen, and Emil Vuorinen, Multiresolution analysis and Zygmund dilations, arXiv:2203.15777 (2022).
- Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907. MR 951744, DOI 10.1002/cpa.3160410704
- Andrei K. Lerner, Sheldy Ombrosi, Carlos Pérez, Rodolfo H. Torres, and Rodrigo Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222–1264. MR 2483720, DOI 10.1016/j.aim.2008.10.014
- Kangwei Li, Henri Martikainen, Yumeng Ou, and Emil Vuorinen, Bilinear representation theorem, Trans. Amer. Math. Soc. 371 (2019), no. 6, 4193–4214. MR 3917220, DOI 10.1090/tran/7505
- Kangwei Li, Henri Martikainen, and Emil Vuorinen, Bilinear Calderón-Zygmund theory on product spaces, J. Math. Pures Appl. (9) 138 (2020), 356–412 (English, with English and French summaries). MR 4098772, DOI 10.1016/j.matpur.2019.10.007
- Kangwei Li, Henri Martikainen, and Emil Vuorinen, Genuinely multilinear weighted estimates for singular integrals in product spaces, Adv. Math. 393 (2021), Paper No. 108099, 49. MR 4340231, DOI 10.1016/j.aim.2021.108099
- Henri Martikainen, Representation of bi-parameter singular integrals by dyadic operators, Adv. Math. 229 (2012), no. 3, 1734–1761. MR 2871155, DOI 10.1016/j.aim.2011.12.019
- Detlef Müller, Fulvio Ricci, and Elias M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math. 119 (1995), no. 2, 199–233. MR 1312498, DOI 10.1007/BF01245180
- Alexander Nagel and Stephen Wainger, $L^{2}$ boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math. 99 (1977), no. 4, 761–785. MR 450901, DOI 10.2307/2373864
- F. Nazarov, S. Treil, and A. Volberg, The $Tb$-theorem on non-homogeneous spaces, Acta Math. 190 (2003), no. 2, 151–239. MR 1998349, DOI 10.1007/BF02392690
- F. Ricci and E. M. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 637–670 (English, with English and French summaries). MR 1182643, DOI 10.5802/aif.1304
Bibliographic Information
- Emil Airta
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40014 University of Jyväkylä, Finland
- MR Author ID: 1390796
- ORCID: 0000-0001-6203-4407
- Email: emil.airta@gmail.com
- Kangwei Li
- Affiliation: Center for Applied Mathematics, Tianjin University, Weijin Road 92, 300072 Tianjin, People’s Republic of China
- MR Author ID: 977289
- ORCID: 0000-0003-0887-6763
- Email: kli@tju.edu.cn
- Henri Martikainen
- Affiliation: Department of Mathematics and Statistics, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130
- MR Author ID: 963282
- Email: henri@wustl.edu
- Received by editor(s): February 23, 2023
- Received by editor(s) in revised form: July 30, 2024
- Published electronically: April 4, 2025
- Additional Notes: The second author was supported by National Key R&D Program of China (No. 2021YFA1002500), and the National Natural Science Foundation of China through project numbers 12222114 and 12001400.
The first author was supported by Academy of Finland through Grant No. 321896 “Incidences on Fractals” (PI = Orponen) and No. 314829 “Frontiers of singular integrals” (PI = Hytönen).
The third author was supported by the National Science Foundation under Grant No. 2247234 (PI = H. Martikainen). The third author was, in addition, supported by the Simons Foundation through MPS-TSM-00002361 (travel support for mathematicians). - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 42B20
- DOI: https://doi.org/10.1090/tran/9366