Crepant Transformation Conjecture for the Grassmannian flop
HTML articles powered by AMS MathViewer
- by Wendelin Lutz, Qaasim Shafi and Rachel Webb;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9377
- Published electronically: April 3, 2025
- HTML | PDF | Request permission
Abstract:
We prove a highly explicit form of the Crepant Transformation Conjecture for Grassmannian flops. Our approach uses abelianization to first relate the restrictions of the Lagrangian cones to degree-2 classes, and then deduces the general result using “explicit reconstruction” (also known as the method of big $I$-functions).References
- Aaron Bertram, Ionuţ Ciocan-Fontanine, and Bumsig Kim, Two proofs of a conjecture of Hori and Vafa, Duke Math. J. 126 (2005), no. 1, 101–136. MR 2110629, DOI 10.1215/S0012-7094-04-12613-2
- Michel Brion, Cohomologie équivariante des points semi-stables, J. Reine Angew. Math. 421 (1991), 125–140 (French). MR 1129578, DOI 10.1515/crll.1991.421.125
- Jim Bryan and Tom Graber, The crepant resolution conjecture, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 23–42. MR 2483931, DOI 10.1090/pspum/080.1/2483931
- Ionuţ Ciocan-Fontanine and Bumsig Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010), no. 6, 3022–3051. MR 2729000, DOI 10.1016/j.aim.2010.05.023
- Ionuţ Ciocan-Fontanine and Bumsig Kim, Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom. 1 (2014), no. 4, 400–448. MR 3272909, DOI 10.14231/AG-2014-019
- Ionuţ Ciocan-Fontanine and Bumsig Kim, Big $I$-functions, Development of moduli theory—Kyoto 2013, Adv. Stud. Pure Math., vol. 69, Math. Soc. Japan, [Tokyo], 2016, pp. 323–347. MR 3586512, DOI 10.2969/aspm/06910323
- Ionuţ Ciocan-Fontanine, Bumsig Kim, and Claude Sabbah, The abelian/nonabelian correspondence and Frobenius manifolds, Invent. Math. 171 (2008), no. 2, 301–343. MR 2367022, DOI 10.1007/s00222-007-0082-x
- Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng, Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J. 147 (2009), no. 3, 377–438. MR 2510741, DOI 10.1215/00127094-2009-015
- Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng, A mirror theorem for toric stacks, Compos. Math. 151 (2015), no. 10, 1878–1912. MR 3414388, DOI 10.1112/S0010437X15007356
- Tom Coates, Hiroshi Iritani, and Yunfeng Jiang, The crepant transformation conjecture for toric complete intersections, Adv. Math. 329 (2018), 1002–1087. MR 3783433, DOI 10.1016/j.aim.2017.11.017
- Tom Coates, Hiroshi Iritani, and Hsian-Hua Tseng, Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), no. 5, 2675–2744. MR 2529944, DOI 10.2140/gt.2009.13.2675
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 69338
- Alberto Collino and William Fulton, Intersection rings of spaces of triangles, Mém. Soc. Math. France (N.S.) 38 (1989), 75–117. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044347
- Will Donovan and Ed Segal, Window shifts, flop equivalences and Grassmannian twists, Compos. Math. 150 (2014), no. 6, 942–978. MR 3223878, DOI 10.1112/S0010437X13007641
- Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634. MR 1614555, DOI 10.1007/s002220050214
- Dan Edidin and William Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3, 619–636. MR 1623412, DOI 10.1353/ajm.1998.0020
- Geir Ellingsrud and Stein Arild Strømme, On the Chow ring of a geometric quotient, Ann. of Math. (2) 130 (1989), no. 1, 159–187. MR 1005610, DOI 10.2307/1971479
- Alexander Givental, Explicit reconstruction in quantum cohomology and K-theory, Ann. Fac. Sci. Toulouse Math. (6) 25 (2016), no. 2-3, 419–432 (English, with English and French summaries). MR 3530164, DOI 10.5802/afst.1500
- Alexander B. Givental, Symplectic geometry of Frobenius structures, Frobenius manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, pp. 91–112. MR 2115767
- Eduardo González and Chris T. Woodward, A wall-crossing formula for Gromov-Witten invariants under variation of git quotient, Math. Ann. 388 (2024), no. 4, 4135–4199. MR 4721789, DOI 10.1007/s00208-023-02622-w
- Victoria Hoskins, Stratifications for moduli of sheaves and moduli of quiver representations, Algebr. Geom. 5 (2018), no. 6, 650–685. MR 3871820, DOI 10.14231/AG-2018-017
- Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016–1079. MR 2553377, DOI 10.1016/j.aim.2009.05.016
- A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530. MR 1315461, DOI 10.1093/qmath/45.4.515
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- Y. Lee, Lectures on Gromov-Witten theory and crepant transformation conjecture, 2011, https://math.utah.edu/~yplee/research/grenoble.pdf.
- Yuan-Pin Lee, Hui-Wen Lin, Feng Qu, and Chin-Lung Wang, Invariance of quantum rings under ordinary flops III: A quantum splitting principle, Camb. J. Math. 4 (2016), no. 3, 333–401. MR 3550285, DOI 10.4310/CJM.2016.v4.n3.a2
- Yuan-Pin Lee, Hui-Wen Lin, and Chin-Lung Wang, Invariance of quantum rings under ordinary flops I: Quantum corrections and reduction to local models, Algebr. Geom. 3 (2016), no. 5, 578–614. MR 3568338, DOI 10.14231/AG-2016-026
- Yuan-Pin Lee, Hui-Wen Lin, and Chin-Lung Wang, Invariance of quantum rings under ordinary flops II: A quantum Leray-Hirsch theorem, Algebr. Geom. 3 (2016), no. 5, 615–653. MR 3568339, DOI 10.14231/AG-2016-027
- Chiu-Chu Melissa Liu, Localization in Gromov-Witten theory and orbifold Gromov-Witten theory, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 353–425. MR 3184181
- S. Martin, Symplectic quotients by a nonabelian group and by its maximal torus, 2000.
- Nathan Priddis, Mark Shoemaker, and Yaoxiong Wen, Wall crossing and the Fourier-Mukai transform for Grassmann flops, SIGMA Symmetry Integrability Geom. Methods Appl. 21 (2025), Paper No. 008, 33. MR 4859965, DOI 10.3842/SIGMA.2025.008
- Yongbin Ruan, The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., vol. 403, Amer. Math. Soc., Providence, RI, 2006, pp. 117–126. MR 2234886, DOI 10.1090/conm/403/07597
- T. Stacks Project Authors, Stacks Project, 2019, https://stacks.math.columbia.edu.
- Rachel Webb, The abelian-nonabelian correspondence for $I$-functions, Int. Math. Res. Not. IMRN 3 (2023), 2592–2648. MR 4565621, DOI 10.1093/imrn/rnab305
Bibliographic Information
- Wendelin Lutz
- Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003
- MR Author ID: 1521828
- Email: wendelinlutz@umass.edu
- Qaasim Shafi
- Affiliation: School of Mathematics, Watson Building, University of Birmingham, Edgbaston B15 2TT, United Kingdom
- MR Author ID: 1522265
- Email: m.q.shafi@bham.ac.uk
- Rachel Webb
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- MR Author ID: 1439044
- ORCID: 0000-0002-4744-2565
- Email: r.webb@cornell.edu
- Received by editor(s): May 1, 2024
- Received by editor(s) in revised form: October 11, 2024, and October 17, 2024
- Published electronically: April 3, 2025
- Additional Notes: The second author was supported by UKRI Future Leaders Fellowship through grant number MR/T01783X/1. The third author was partially supported by an NSF Postdoctoral Research Fellowship, award number 200213.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 14N35, 14C15, 14E99
- DOI: https://doi.org/10.1090/tran/9377