Local exotic tori
HTML articles powered by AMS MathViewer
- by Joé Brendel;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9385
- Published electronically: January 30, 2025
- HTML | PDF
Abstract:
For a broad class of symplectic manifolds of dimension at least six, we find the following new phenomenon: there exist local exotic Lagrangian tori.
More specifically, let $X$ be a geometrically bounded symplectic manifold of dimension at least six. We show that every open subset of $X$ contains infinitely many Lagrangian tori which are distinct up to symplectomorphisms of $X$ while being Lagrangian isotopic and having the same classical invariants. The proof relies on a locality property of the displacement energy germ, which allows us to compute it in a Darboux chart.
Since these tori are not monotone, bubbling may occur and the count of Maslov index two $J$-holomorphic disks does not yield an invariant.
References
- Miguel Abreu and Leonardo Macarini, Remarks on Lagrangian intersections in toric manifolds, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3851–3875. MR 3042606, DOI 10.1090/S0002-9947-2012-05791-6
- Peter Albers and Urs Frauenfelder, A nondisplaceable Lagrangian torus in $T^*S^2$, Comm. Pure Appl. Math. 61 (2008), no. 8, 1046–1051. MR 2417887, DOI 10.1002/cpa.20216
- Denis Auroux, Mirror symmetry and $T$-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51–91. MR 2386535
- Denis Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, Surv. Differ. Geom., vol. 13, Int. Press, Somerville, MA, 2009, pp. 1–47. MR 2537081, DOI 10.4310/SDG.2008.v13.n1.a1
- Denis Auroux, Infinitely many monotone Lagrangian tori in $\Bbb {R}^6$, Invent. Math. 201 (2015), no. 3, 909–924. MR 3385637, DOI 10.1007/s00222-014-0561-9
- Paul Biran and Octav Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009), no. 5, 2881–2989. MR 2546618, DOI 10.2140/gt.2009.13.2881
- Joé Brendel, An introduction to the Chekanov torus, Proceedings of the Gökova Geometry-Topology Conference 2021, Int. Press, Somerville, MA, 2022, pp. 1–56. MR 4616427
- J. Brendel, Hamiltonian classification of toric fibres and symmetric probes, Algebr. Geom. Topol. (2023), To appear.
- Joé Brendel, Real Lagrangian tori and versal deformations, J. Symplectic Geom. 21 (2023), no. 3, 463–507. MR 4687581, DOI 10.4310/jsg.2023.v21.n3.a2
- J. Brendel, J. Hauber, and J. Schmitz, Semi-local exotic Lagrangian tori in dimension four, Ann. Inst. Fourier (2024), To appear.
- J. Brendel and J. Kim, On Lagrangian tori in $S^2\times S^2$, 2024, In preparation.
- Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. MR 1853077, DOI 10.1007/978-3-540-45330-7
- Yu. V. Chekanov, Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z. 223 (1996), no. 4, 547–559. MR 1421954, DOI 10.1007/PL00004278
- Yu. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998), no. 1, 213–226. MR 1646550, DOI 10.1215/S0012-7094-98-09506-0
- Yuri Chekanov and Felix Schlenk, Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci. 17 (2010), 104–121. MR 2735030, DOI 10.3934/era.2010.17.104
- Yuri Chekanov and Felix Schlenk, Lagrangian product tori in symplectic manifolds, Comment. Math. Helv. 91 (2016), no. 3, 445–475. MR 3541716, DOI 10.4171/CMH/391
- Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339 (French, with English summary). MR 984900, DOI 10.24033/bsmf.2100
- Georgios Dimitroglou Rizell, The classification of Lagrangians nearby the Whitney immersion, Geom. Topol. 23 (2019), no. 7, 3367–3458. MR 4059087, DOI 10.2140/gt.2019.23.3367
- J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980), no. 6, 687–706. MR 596430, DOI 10.1002/cpa.3160330602
- Yakov Eliashberg and Leonid Polterovich, The problem of Lagrangian knots in four-manifolds, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 313–327. MR 1470735, DOI 10.1090/amsip/002.1/18
- Michael Entov and Leonid Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006), no. 1, 75–99. MR 2208798, DOI 10.4171/CMH/43
- Michael Entov and Leonid Polterovich, Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009), no. 3, 773–826. MR 2507748, DOI 10.1112/S0010437X0900400X
- Jonny Evans, Lectures on Lagrangian torus fibrations, London Mathematical Society Student Texts, vol. 105, Cambridge University Press, Cambridge, 2023. MR 4605050, DOI 10.1017/9781009372671
- J. D. Evans, KIAS lectures on symplectic aspects of degenerations, 2019.
- Jonathan David Evans and Ivan Smith, Markov numbers and Lagrangian cell complexes in the complex projective plane, Geom. Topol. 22 (2018), no. 2, 1143–1180. MR 3748686, DOI 10.2140/gt.2018.22.1143
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), no. 1, 23–174. MR 2573826, DOI 10.1215/00127094-2009-062
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609–711. MR 2827178, DOI 10.1007/s00029-011-0057-z
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory on compact toric manifolds: survey, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 229–298. MR 3076063, DOI 10.4310/SDG.2012.v17.n1.a6
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Toric degeneration and nondisplaceable Lagrangian tori in $S^2\times S^2$, Int. Math. Res. Not. IMRN 13 (2012), 2942–2993. MR 2946229, DOI 10.1093/imrn/rnr128
- Agnès Gadbled, On exotic monotone Lagrangian tori in $\Bbb {CP}^2$ and $\Bbb S^2\times \Bbb S^2$, J. Symplectic Geom. 11 (2013), no. 3, 343–361. MR 3100797, DOI 10.4310/jsg.2013.v11.n3.a2
- Sergey Galkin and Grigory Mikhalkin, Singular symplectic spaces and holomorphic membranes, Eur. J. Math. 8 (2022), no. 3, 932–951. MR 4498821, DOI 10.1007/s40879-022-00568-y
- S. Galkin and A. Usnich, Laurent phenomenon for Landau–Ginzburg potential, 2010.
- Yoel Groman and Umut Varolgunes, Locality of relative symplectic cohomology for complete embeddings, Compos. Math. 159 (2023), no. 12, 2551–2637. MR 4653165, DOI 10.1112/s0010437x23007492
- Victor Guillemin, Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Progress in Mathematics, vol. 122, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301331, DOI 10.1007/978-1-4612-0269-1
- Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990. MR 1066693
- Paul Hacking and Yuri Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), no. 1, 169–192. MR 2581246, DOI 10.1112/S0010437X09004370
- Richard Hind and Jun Zhang, Hamiltonian knottedness and lifting paths from the shape invariant, Compos. Math. 159 (2023), no. 11, 2416–2457. MR 4651500, DOI 10.1112/s0010437x23007479
- Oleg N. Karpenkov, Geometry of continued fractions, Algorithms and Computation in Mathematics, vol. 26, Springer, Berlin, [2022] ©2022. Second edition [of 3099298]. MR 4442262, DOI 10.1007/978-3-662-65277-0
- Jacques Lafontaine and Michèle Audin, Introduction: applications of pseudo-holomorphic curves to symplectic topology, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 1–14. MR 1274924, DOI 10.1007/978-3-0348-8508-9_{1}
- Eugene Lerman and Susan Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4201–4230. MR 1401525, DOI 10.1090/S0002-9947-97-01821-7
- Dusa McDuff, Displacing Lagrangian toric fibers via probes, Low-dimensional and symplectic topology, Proc. Sympos. Pure Math., vol. 82, Amer. Math. Soc., Providence, RI, 2011, pp. 131–160. MR 2768658, DOI 10.1090/pspum/082/2768658
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 3rd ed., Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2017. MR 3674984, DOI 10.1093/oso/9780198794899.001.0001
- E. Meinrenken, Symplectic geometry, Lecture Notes.
- Joel Oakley and Michael Usher, On certain Lagrangian submanifolds of $S^2\times S^2$ and $\Bbb {C}\textrm {P}^n$, Algebr. Geom. Topol. 16 (2016), no. 1, 149–209. MR 3470699, DOI 10.2140/agt.2016.16.149
- Yong-Geun Oh, Gromov-Floer theory and disjunction energy of compact Lagrangian embeddings, Math. Res. Lett. 4 (1997), no. 6, 895–905. MR 1492128, DOI 10.4310/MRL.1997.v4.n6.a9
- Kaoru Ono, A question analogous to the flux conjecture concerning Lagrangian submanifolds, Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova, 2008, pp. 1–14. MR 2509746
- Leonid Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. MR 1826128, DOI 10.1007/978-3-0348-8299-6
- J. Schmitz, Nodal tangles, 2024, In preparation.
- E. Shelukhin, D. Tonkonog, and R. Vianna, Geometry of symplectic flux and Lagrangian torus fibrations, 2019.
- J.-C. Sikorav, Systèmes hamiltoniens et topologie symplectique, ETS Editrice, Pisa, 1990.
- Margaret Symington, Four dimensions from two in symplectic topology, Topology and geometry of manifolds (Athens, GA, 2001) Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc., Providence, RI, 2003, pp. 153–208. MR 2024634, DOI 10.1090/pspum/071/2024634
- Renato Ferreira de Velloso Vianna, Infinitely many exotic monotone Lagrangian tori in $\Bbb {CP}^2$, J. Topol. 9 (2016), no. 2, 535–551. MR 3509972, DOI 10.1112/jtopol/jtw002
- Renato Vianna, Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. (N.S.) 23 (2017), no. 3, 1955–1996. MR 3663599, DOI 10.1007/s00029-017-0312-z
- Weiwei Wu, On an exotic Lagrangian torus in $\Bbb {C}P^2$, Compos. Math. 151 (2015), no. 7, 1372–1394. MR 3371497, DOI 10.1112/S0010437X14007945
- Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. I. Arnold-Liouville with singularities, Compositio Math. 101 (1996), no. 2, 179–215. MR 1389366
- Tien Zung Nguyen, A note on focus-focus singularities, Differential Geom. Appl. 7 (1997), no. 2, 123–130. MR 1454718, DOI 10.1016/S0926-2245(96)00042-3
- Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. II. Topological classification, Compositio Math. 138 (2003), no. 2, 125–156. MR 2018823, DOI 10.1023/A:1026133814607
Bibliographic Information
- Joé Brendel
- Affiliation: ETH Zürich, D-MATH, Rämistrasse 101, 8092 Zürich, Switzerland
- ORCID: 0009-0007-5295-5182
- Email: joe.brendel@math.ethz.ch
- Received by editor(s): March 4, 2024
- Received by editor(s) in revised form: November 23, 2024, and December 5, 2024
- Published electronically: January 30, 2025
- Additional Notes: The author was supported by the following grants: Israel Science Foundation grant 1102/20, ERC Starting Grant 757585 and Swiss National Science Foundation Ambizione Grant PZ00P2-223460.
- © Copyright 2025 by the authors
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 53D12; Secondary 53D20
- DOI: https://doi.org/10.1090/tran/9385