Gromov–Witten/Pandharipande–Thomas correspondence via conifold transitions
HTML articles powered by AMS MathViewer
- by Yinbang Lin and Sz-Sheng Wang;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9387
- Published electronically: January 30, 2025
- HTML | PDF
Abstract:
Given a projective conifold transition of smooth projective threefolds from $X$ to $Y$, we show that if the Gromov–Witten/Pandharipande–Thomas descendent correspondence holds for the resolution $Y$, then it also holds for the smoothing $X$ with stationary descendent insertions. As applications, we show the correspondence in new cases, especially for Fano threefolds.References
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Tom Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969–998. MR 2813335, DOI 10.1090/S0894-0347-2011-00701-7
- John Calabrese, Donaldson-Thomas invariants and flops, J. Reine Angew. Math. 716 (2016), 103–145. MR 3518373, DOI 10.1515/crelle-2014-0017
- Ivan Cheltsov and Jihun Park, Sextic double solids, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, pp. 75–132. MR 2605166, DOI 10.1007/978-0-8176-4934-0_{4}
- C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), no. 2, 215–290. MR 444662, DOI 10.1215/S0012-7094-77-04410-6
- C. Herbert Clemens, Double solids, Adv. in Math. 47 (1983), no. 2, 107–230. MR 690465, DOI 10.1016/0001-8708(83)90025-7
- Tom Coates, Alessio Corti, and Genival da Silva Jr., On the topology of Fano smoothings, Interactions with lattice polytopes, Springer Proc. Math. Stat., vol. 386, Springer, Cham, [2022] ©2022, pp. 135–156. MR 4461067, DOI 10.1007/978-3-030-98327-7_{6}
- S. K. Donaldson and R. P. Thomas, Gauge theory in higher dimensions, The geometric universe (Oxford, 1996) Oxford Univ. Press, Oxford, 1998, pp. 31–47. MR 1634503
- Mohammad F. Tehrani and Aleksey Zinger, The refined symplectic sum formula for Gromov-Witten invariants, Internat. J. Math. 31 (2020), no. 4, 2050032, 60. MR 4098909, DOI 10.1142/S0129167X20500329
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534
- S. Galkin, Small toric degenerations of Fano threefolds, arXiv:1809.02705, 2018.
- Paul S. Green and Tristan Hübsch, Connecting moduli spaces of Calabi-Yau threefolds, Comm. Math. Phys. 119 (1988), no. 3, 431–441. MR 969210, DOI 10.1007/BF01218081
- Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow, Mirror symmetry, Clay Mathematics Monographs, vol. 1, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003. With a preface by Vafa. MR 2003030
- Jianxun Hu and Wei-Ping Li, The Donaldson-Thomas invariants under blowups and flops, J. Differential Geom. 90 (2012), no. 3, 391–411. MR 2916041
- Eleny-Nicoleta Ionel and Thomas H. Parker, The symplectic sum formula for Gromov-Witten invariants, Ann. of Math. (2) 159 (2004), no. 3, 935–1025. MR 2113018, DOI 10.4007/annals.2004.159.935
- V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 516–562, 717 (Russian). MR 463151
- V. A. Iskovskih, Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 506–549 (Russian). MR 503430
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2
- Yuan-Pin Lee, Hui-Wen Lin, and Chin-Lung Wang, Towards $A+B$ theory in conifold transitions for Calabi-Yau threefolds, J. Differential Geom. 110 (2018), no. 3, 495–541. MR 3880232, DOI 10.4310/jdg/1542423628
- An-Min Li and Yongbin Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), no. 1, 151–218. MR 1839289, DOI 10.1007/s002220100146
- Jun Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001), no. 3, 509–578. MR 1882667
- Jun Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002), no. 2, 199–293. MR 1938113
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
- Jun Li and Baosen Wu, Good degeneration of Quot-schemes and coherent systems, Comm. Anal. Geom. 23 (2015), no. 4, 841–921. MR 3385781, DOI 10.4310/CAG.2015.v23.n4.a5
- Yijie Lin, Relative orbifold Pandharipande-Thomas theory and the degeneration formula, Int. Math. Res. Not. IMRN 5 (2023), 4082–4148. MR 4565664, DOI 10.1093/imrn/rnab347
- Chiu-Chu Melissa Liu, Kefeng Liu, and Jian Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007), no. 1, 149–184. MR 2257399, DOI 10.1090/S0894-0347-06-00541-8
- C.-H. Liu and S.-T. Yau, Transformation of algebraic Gromov-Witten invariants of three-folds under flops and small extremal transitions, with an appendix from the stringy and the symplectic viewpoint, arXiv:math/0505084, 2005.
- Chien-Hao Liu and Shing-Tung Yau, Extracting Gromov-Witten invariants of a conifold from semi-stable reduction and relative GW-invariants of pairs, Mirror symmetry. V, AMS/IP Stud. Adv. Math., vol. 38, Amer. Math. Soc., Providence, RI, 2006, pp. 441–456. MR 2282970, DOI 10.1090/amsip/038/19
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), no. 5, 1286–1304. MR 2264665, DOI 10.1112/S0010437X06002314
- Miguel Moreira, Virasoro conjecture for the stable pairs descendent theory of simply connected 3-folds (with applications to the Hilbert scheme of points of a surface), J. Lond. Math. Soc. (2) 106 (2022), no. 1, 154–191. MR 4454488, DOI 10.1112/jlms.12571
- Shigefumi Mori and Shigeru Mukai, Classification of Fano $3$-folds with $B_{2}\geq 2$, Manuscripta Math. 36 (1981/82), no. 2, 147–162. MR 641971, DOI 10.1007/BF01170131
- Shigefumi Mori and Shigeru Mukai, Erratum: “Classification of Fano 3-folds with $B_2\geq 2$” [Manuscripta Math. 36 (1981/82), no. 2, 147–162; MR0641971 (83f:14032)], Manuscripta Math. 110 (2003), no. 3, 407. MR 1969009, DOI 10.1007/s00229-002-0336-2
- David R. Morrison, Through the looking glass, Mirror symmetry, III (Montreal, PQ, 1995) AMS/IP Stud. Adv. Math., vol. 10, Amer. Math. Soc., Providence, RI, 1999, pp. 263–277. MR 1673108, DOI 10.1090/amsip/010/10
- Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344, DOI 10.1090/ulect/018
- Georg Oberdieck, Marked relative invariants and GW/PT correspondences, Adv. Math. 439 (2024), Paper No. 109472, 98. MR 4687909, DOI 10.1016/j.aim.2023.109472
- A. Oblomkov, A. Okounkov, and R. Pandharipande, GW/PT descendent correspondence via vertex operators, Comm. Math. Phys. 374 (2020), no. 3, 1321–1359. MR 4076076, DOI 10.1007/s00220-020-03686-4
- Rahul Pandharipande, Descendents for stable pairs on 3-folds, Modern geometry: a celebration of the work of Simon Donaldson, Proc. Sympos. Pure Math., vol. 99, Amer. Math. Soc., Providence, RI, 2018, pp. 251–287. MR 3838885, DOI 10.1090/pspum/099/09
- Rahul Pandharipande and Aaron Pixton, Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol. 18 (2014), no. 5, 2747–2821. MR 3285224, DOI 10.2140/gt.2014.18.2747
- R. Pandharipande and A. Pixton, Gromov-Witten/Pairs correspondence for the quintic 3-fold, J. Amer. Math. Soc. 30 (2017), no. 2, 389–449. MR 3600040, DOI 10.1090/jams/858
- Rahul Pandharipande and Richard P. Thomas, The 3-fold vertex via stable pairs, Geom. Topol. 13 (2009), no. 4, 1835–1876. MR 2497313, DOI 10.2140/gt.2009.13.1835
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, DOI 10.1007/s00222-009-0203-9
- J. Pardon, Universally counting curves in calabi-yau threefolds, arXiv:2308.02948v2, 2023.
- Miles Reid, The moduli space of $3$-folds with $K=0$ may nevertheless be irreducible, Math. Ann. 278 (1987), no. 1-4, 329–334. MR 909231, DOI 10.1007/BF01458074
- Michele Rossi, Geometric transitions, J. Geom. Phys. 56 (2006), no. 9, 1940–1983. MR 2240431, DOI 10.1016/j.geomphys.2005.09.005
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182, DOI 10.4310/jdg/1214341649
- Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), no. 4, 1119–1157. MR 2669709, DOI 10.1090/S0894-0347-10-00670-3
- Yukinobu Toda, Curve counting theories via stable objects II: DT/ncDT flop formula, J. Reine Angew. Math. 675 (2013), 1–51. MR 3021446, DOI 10.1515/CRELLE.2011.176
- Yukinobu Toda, Hall algebras in the derived category and higher-rank DT invariants, Algebr. Geom. 7 (2020), no. 3, 240–262. MR 4087861, DOI 10.14231/ag-2020-008
- Claire Voisin, Hodge theory and complex algebraic geometry. I, Reprint of the 2002 English edition, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge, 2007. Translated from the French by Leila Schneps. MR 2451566
- Claire Voisin, Hodge theory and complex algebraic geometry. II, Reprint of the 2003 English edition, Cambridge Studies in Advanced Mathematics, vol. 77, Cambridge University Press, Cambridge, 2007. Translated from the French by Leila Schneps. MR 2449178
- Sz-Sheng Wang, On the connectedness of the standard web of Calabi-Yau 3-folds and small transitions, Asian J. Math. 22 (2018), no. 6, 981–1003. MR 3919548, DOI 10.4310/AJM.2018.v22.n6.a1
- Zijun Zhou, Relative orbifold Donaldson-Thomas theory and the degeneration formula, Algebr. Geom. 5 (2018), no. 4, 464–522. MR 3813751, DOI 10.14231/AG-2018-013
Bibliographic Information
- Yinbang Lin
- Affiliation: School of Mathematical Sciences, Key Laboratory of Intelligent Computing and Applications (Ministry of Education), Tongji University, Shanghai 200092, People’s Republic of China
- MR Author ID: 1167756
- ORCID: 0000-0002-6926-0332
- Email: yinbang_lin@tongji.edu.cn
- Sz-Sheng Wang
- Affiliation: Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- MR Author ID: 967843
- ORCID: 0000-0003-0960-2174
- Email: sswangtw@math.nctu.edu.tw
- Received by editor(s): March 7, 2024
- Received by editor(s) in revised form: April 17, 2024, November 6, 2024, and December 10, 2024
- Published electronically: January 30, 2025
- Additional Notes: Sz-Sheng Wang is the corresponding author
The first author was supported by grants from the Fundamental Research Funds for the Central Universities and Applied Basic Research Programs of Science and Technology Commission Foundation of Shanghai Municipality (22JC1402700). The second author was supported by the National Science and Technology Council (NSTC) under grant number 111-2115-M-A49-019-MY3. - © Copyright 2025 by the authors
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 14N35; Secondary 14D20
- DOI: https://doi.org/10.1090/tran/9387