Tensor rectifiable $G$-flat chains
HTML articles powered by AMS MathViewer
- by M. Goldman and B. Merlet;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9392
- Published electronically: April 4, 2025
- HTML | PDF | Request permission
Abstract:
We prove a rigidity result for $k$-rectifiable sets $\Sigma$ in $\mathbb {R}^n$ (that is, up to an ${\mathcal {H}}^k$-negligible set, $\Sigma$ is covered by a countable union of $k$-manifolds of class $C^1$). Given some decompositions $k=k_1+k_2$, $n=n_1+n_2$, we consider the following properties.
- For ${\mathcal {H}}^k$-almost every $x\in \Sigma$, the tangent plane to $\Sigma$ splits as $T_x\Sigma =L^{1}(x)\times L^{2}(x)$ for some $k_1$-plane $L^1(x)\subset \mathbb {R}^{n_1}$ and some $k_2$-plane $L^2(x)\subset \mathbb {R}^{n_2}$.
- Up to an ${\mathcal {H}}^k$-negligible set, $\Sigma \subset \Sigma ^1\times \Sigma ^2$ for some sets $\Sigma ^1\subset \mathbb {R}^{n_1}$, $\Sigma ^2\subset \mathbb {R}^{n_2}$ such that $\Sigma ^1$ is $k_1$-rectifiable and $\Sigma ^2$ is $k_2$-rectifiable (we say that $\Sigma$ is $(k_1,k_2)$-rectifiable).
We always have $(2) \!\!\!\implies \!\!\! (1)$. We establish a partial converse: if $A=A{\text {\huge$\llcorner$}}\Sigma$ for some normal rectifiable $G$-flat $k$-chain $A$, then $(1) \!\!\implies \!\! (2)$ in the sense that $A=A{\text {\huge$\llcorner$}} \Sigma ^1\times \Sigma ^2$ with $\Sigma ^1$, $\Sigma ^2$ as in (2).
In the proof we introduce the new groups of tensor flat chains (or $(k_1,k_2)$-chains) in $\mathbb {R}^{n_1}\times \mathbb {R}^{n_2}$ generalizing Fleming’s $G$-flat chains. The other main tool is White’s rectifiable slices theorem.
References
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292
- A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962), 303–315. MR 143162, DOI 10.1007/BF02413056
- Adolfo Arroyo-Rabasa, Guido De Philippis, Jonas Hirsch, and Filip Rindler, Dimensional estimates and rectifiability for measures satisfying linear PDE constraints, Geom. Funct. Anal. 29 (2019), no. 3, 639–658. MR 3962875, DOI 10.1007/s00039-019-00497-1
- Mauro Bonafini, Giandomenico Orlandi, and Édouard Oudet, Variational approximation of functionals defined on 1-dimensional connected sets: the planar case, SIAM J. Math. Anal. 50 (2018), no. 6, 6307–6332. MR 3890784, DOI 10.1137/17M1159452
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- Wendell H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160–186. MR 185084, DOI 10.1090/S0002-9947-1966-0185084-5
- Michael Goldman and Benoit Merlet, Non-convex functionals penalizing simultaneous oscillations along independent directions: rigidity estimates, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 3, 1473–1509. MR 4334326
- M. Goldman and B. Merlet, A deformation theorem for tensor flat chains and applications (complement to “tensor rectifiable ${G}$-flat chains”), arXiv, 2022.
- Michael Goldman and Benoit Merlet, Set-decomposition of normal rectifiable $G$-chains via an abstract decomposition principle, Rev. Mat. Iberoam. 40 (2024), no. 6, 2073–2094. MR 4814697, DOI 10.4171/rmi/1504
- M. Goldman and B. Merlet. Non-convex functionals penalizing simultaneous oscillations along two independent directions: structure of the defect measure, arXiv:2309.17067, 2023
- Mariano Giaquinta, Giuseppe Modica, and Jiří Souček, Cartesian currents in the calculus of variations. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 37, Springer-Verlag, Berlin, 1998. Cartesian currents. MR 1645086, DOI 10.1007/978-3-662-06218-0
- Mariano Giaquinta, Giuseppe Modica, and Jiří Souček, Cartesian currents in the calculus of variations. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 38, Springer-Verlag, Berlin, 1998. Variational integrals. MR 1645082, DOI 10.1007/978-3-662-06218-0
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
- Andrea Marchese and Annalisa Massaccesi, The Steiner tree problem revisited through rectifiable $G$-currents, Adv. Calc. Var. 9 (2016), no. 1, 19–39. MR 3441080, DOI 10.1515/acv-2014-0022
- Andrea Marchese, Annalisa Massaccesi, and Riccardo Tione, A multimaterial transport problem and its convex relaxation via rectifiable $G$-currents, SIAM J. Math. Anal. 51 (2019), no. 3, 1965–1998. MR 3950680, DOI 10.1137/17M1162858
- Gilles Pisier, Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 237–323. MR 2888168, DOI 10.1090/S0273-0979-2011-01348-9
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- Brian White, The deformation theorem for flat chains, Acta Math. 183 (1999), no. 2, 255–271. MR 1738045, DOI 10.1007/BF02392829
- Brian White, Rectifiability of flat chains, Ann. of Math. (2) 150 (1999), no. 1, 165–184. MR 1715323, DOI 10.2307/121100
Bibliographic Information
- M. Goldman
- Affiliation: CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
- MR Author ID: 934822
- Email: michael.goldman@cnrs.fr
- B. Merlet
- Affiliation: Univ. Lille, CNRS, UMR 8524, Inria - Laboratoire Paul Painlevé, F-59000 Lille, France
- MR Author ID: 751258
- ORCID: 0000-0002-6334-9037
- Email: benoit.merlet@univ-lille.fr
- Received by editor(s): June 14, 2023
- Received by editor(s) in revised form: November 3, 2023, and December 11, 2024
- Published electronically: April 4, 2025
- Additional Notes: The first author was partially supported by the ANR SHAPO. The second author was partially supported by the INRIA team RAPSODI and the Labex CEMPI (ANR-11-LABX-0007-01).
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 49Q15; Secondary 53C24
- DOI: https://doi.org/10.1090/tran/9392