Polynomials with many rational preperiodic points
HTML articles powered by AMS MathViewer
- by John R. Doyle and Trevor Hyde;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9406
- Published electronically: May 8, 2025
- HTML | PDF | Request permission
Abstract:
In this paper we study questions related to exceptional behavior of preperiodic points of polynomials and rational functions. We use techniques from the geometry of numbers and algebraic combinatorics to show that for all $d\geq 2$, there exists a polynomial $f_d(x) \in \mathbb {Q}[x]$ with $2\leq \deg (f_d) \leq d$ such that $f_d(x)$ has at least $d + \lfloor \log _2(d)\rfloor$ rational preperiodic points. Furthermore, we show that for all $d\geq 2$ there are polynomials $f(x)$ and $g(x)$ with at least $2d^2$ common complex preperiodic points.References
- Matthew Baker and Laura DeMarco, Preperiodic points and unlikely intersections, Duke Math. J. 159 (2011), no. 1, 1–29. MR 2817647, DOI 10.1215/00127094-1384773
- A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc. 22 (1990), no. 6, 576–582. MR 1099008, DOI 10.1112/blms/22.6.576
- Robert L. Benedetto, Benjamin Dickman, Sasha Joseph, Benjamin Krause, Daniel Rubin, and Xinwen Zhou, Computing points of small height for cubic polynomials, Involve 2 (2009), no. 1, 37–64. MR 2501344, DOI 10.2140/involve.2009.2.37
- Talia Blum, John R. Doyle, Trevor Hyde, Colby Kelln, Henry Talbott, and Max Weinreich, Dynamical moduli spaces and polynomial endomorphisms of configurations, Arnold Math. J. 8 (2022), no. 2, 285–317. MR 4446271, DOI 10.1007/s40598-022-00197-z
- David M. Bressoud, Proofs and confirmations, MAA Spectrum, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 1999. The story of the alternating sign matrix conjecture. MR 1718370
- Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997. MR 1421321, DOI 10.1090/surv/048
- Lucia Caporaso, Joe Harris, and Barry Mazur, How many rational points can a curve have?, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 13–31. MR 1363052, DOI 10.1007/978-1-4612-4264-2_{2}
- J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR 1434478
- Gil Cohen, Amir Shpilka, and Avishay Tal, On the degree of univariate polynomials over the integers, Combinatorica 37 (2017), no. 3, 419–464. MR 3666786, DOI 10.1007/s00493-015-2987-0
- Henry Cohn, Michael Larsen, and James Propp, The shape of a typical boxed plane partition, New York J. Math. 4 (1998), 137–165. MR 1641839
- Guy David and Carlos Tomei, The problem of the calissons, Amer. Math. Monthly 96 (1989), no. 5, 429–431. MR 994034, DOI 10.2307/2325150
- Laura DeMarco, Holly Krieger, and Hexi Ye, Common preperiodic points for quadratic polynomials, J. Mod. Dyn. 18 (2022), 363–413. MR 4470542, DOI 10.3934/jmd.2022012
- Laura DeMarco and Niki Myrto Mavraki, Dynamics on $\Bbb {P}^1$: preperiodic points and pairwise stability, Compos. Math. 160 (2024), no. 2, 356–387. MR 4685664, DOI 10.1112/s0010437x23007546
- John R. Doyle, Xander Faber, and David Krumm, Preperiodic points for quadratic polynomials over quadratic fields, New York J. Math. 20 (2014), 507–605. MR 3218788
- Hang Fu and Michael Stoll, Elliptic curves with common torsion $x$-coordinates and hyperelliptic torsion packets, Proc. Amer. Math. Soc. 150 (2022), no. 12, 5137–5149. MR 4494592, DOI 10.1090/proc/16102
- Ira Gessel and Gérard Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), no. 3, 300–321. MR 815360, DOI 10.1016/0001-8708(85)90121-5
- I. M. Gessel and X. G. Viennot, Determinants, paths, and plane partitions, preprint (1989), https://people.brandeis.edu/ gessel/homepage/papers/pp.pdf.
- Wade Hindes, Finite orbit points for sets of quadratic polynomials, Int. J. Number Theory 15 (2019), no. 8, 1693–1719. MR 3994153, DOI 10.1142/S1793042119500945
- Shu Kawaguchi and Joseph H. Silverman, Dynamics of projective morphisms having identical canonical heights, Proc. Lond. Math. Soc. (3) 95 (2007), no. 2, 519–544. MR 2352570, DOI 10.1112/plms/pdm022
- G. M. Levin, Symmetries on Julia sets, Mat. Zametki 48 (1990), no. 5, 72–79, 159 (Russian); English transl., Math. Notes 48 (1990), no. 5-6, 1126–1131 (1991). MR 1092156, DOI 10.1007/BF01236299
- G. M. Levin, Letter to the editors: “Symmetries on Julia sets” [Mat. Zametki 48 (1990), no. 5, 72–79; MR1092156 (92e:30015)], Mat. Zametki 69 (2001), no. 3, 479–480 (Russian); English transl., Math. Notes 69 (2001), no. 3-4, 432–433. MR 1846845, DOI 10.1023/A:1010299912212
- Nicole R. Looper, Dynamical uniform boundedness and the $abc$-conjecture, Invent. Math. 225 (2021), no. 1, 1–44. MR 4270662, DOI 10.1007/s00222-020-01029-7
- N. Looper, The uniform boundedness and dynamical Lang conjectures for polynomials, Preprint, arXiv:2105.05240, 2021.
- N. M. Mavraki and H. Schmidt, On the dynamical Bogomolov conjecture for families of split rational maps, Preprint, arXiv:2201.10455, 2022.
- Patrick Morton and Serban Raianu, Arithmetic properties of 3-cycles of quadratic maps over $\Bbb {Q}$, J. Number Theory 240 (2022), 685–729. MR 4458256, DOI 10.1016/j.jnt.2022.01.005
- Patrick Morton and Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2 (1994), 97–110. MR 1264933, DOI 10.1155/S1073792894000127
- D. G. Northcott, Periodic points on an algebraic variety, Ann. of Math. (2) 51 (1950), 167–177. MR 34607, DOI 10.2307/1969504
- Bjorn Poonen, The classification of rational preperiodic points of quadratic polynomials over $\textbf {Q}$: a refined conjecture, Math. Z. 228 (1998), no. 1, 11–29. MR 1617987, DOI 10.1007/PL00004405
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- John R. Stembridge, Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math. 83 (1990), no. 1, 96–131. MR 1069389, DOI 10.1016/0001-8708(90)90070-4
Bibliographic Information
- John R. Doyle
- Affiliation: Dept. of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- MR Author ID: 993361
- ORCID: 0000-0001-6476-0605
- Email: john.r.doyle@okstate.edu
- Trevor Hyde
- Affiliation: Dept. of Mathematics, Vassar College, Poughkeepsie, New York 12604
- MR Author ID: 975042
- ORCID: 0000-0002-9380-1928
- Email: thyde@vassar.edu
- Received by editor(s): April 18, 2024
- Received by editor(s) in revised form: September 27, 2024, December 28, 2024, and January 2, 2025
- Published electronically: May 8, 2025
- Additional Notes: The first author was partially supported by NSF grants DMS-2112697 and DMS-2302394. The second author was partially supported by the NSF Postdoctoral Research Fellowship DMS-2002176 and the Jump Trading Mathlab Research Fund.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 37F10, 37P05, 11H06
- DOI: https://doi.org/10.1090/tran/9406