Polynomiality of surface braid and mapping class group representations
HTML articles powered by AMS MathViewer
- by Martin Palmer and Arthur Soulié;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9409
- Published electronically: May 1, 2025
Abstract:
We study a wide range of homologically-defined representations of surface braid groups and of mapping class groups of surfaces, including the Lawrence-Bigelow representations of the classical braid groups. These representations naturally come in families, defining homological representation functors on categories associated to surface braid groups or all mapping class groups. We prove that many of these homological representation functors are polynomial. This has applications to twisted homological stability and to understanding the structure of the representation theory of the associated families of groups. Our polynomiality results are consequences of more fundamental results establishing relations amongst the coherent representations that we consider via short exact sequences of functors. As well as polynomiality, these short exact sequences also have applications to understanding the kernels of the homological representations under consideration.References
- Byung Hee An and Ki Hyoung Ko, A family of representations of braid groups on surfaces, Pacific J. Math. 247 (2010), no. 2, 257–282. MR 2734148, DOI 10.2140/pjm.2010.247.257
- Cristina Ana-Maria Anghel and Martin Palmer, Lawrence-Bigelow representations, bases and duality, arXiv:2011.02388, 2020.
- Reinhold Baer, Kurventypen auf Flächen, J. Reine Angew. Math. 156 (1927), 231–246 (German). MR 1581099, DOI 10.1515/crll.1927.156.231
- Reinhold Baer, Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. Reine Angew. Math. 159 (1928), 101–116 (German). MR 1581156, DOI 10.1515/crll.1928.159.101
- Paolo Bellingeri, On presentations of surface braid groups, J. Algebra 274 (2004), no. 2, 543–563. MR 2043362, DOI 10.1016/j.jalgebra.2003.12.009
- Paolo Bellingeri, Eddy Godelle, and John Guaschi, Abelian and metabelian quotient groups of surface braid groups, Glasg. Math. J. 59 (2017), no. 1, 119–142. MR 3576330, DOI 10.1017/S0017089516000070
- Stephen Bigelow, Homological representations of the Iwahori-Hecke algebra, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 493–507. MR 2172492, DOI 10.2140/gtm.2004.7.493
- Stephen J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), no. 2, 471–486. MR 1815219, DOI 10.1090/S0894-0347-00-00361-1
- Joan S. Birman and Tara E. Brendle, Braids: a survey, Handbook of knot theory, Elsevier B. V., Amsterdam, 2005, pp. 19–103. MR 2179260, DOI 10.1016/B978-044451452-3/50003-4
- Christian Blanchet, Martin Palmer, and Awais Shaukat, Heisenberg homology on surface configurations, Mathematische Annalen, To appear, arXiv:2109.00515, 2021.
- Søren K. Boldsen, Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z. 270 (2012), no. 1-2, 297–329. MR 2875835, DOI 10.1007/s00209-010-0798-y
- Glen E. Bredon, Sheaf theory, 2nd ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997. MR 1481706, DOI 10.1007/978-1-4612-0647-7
- Werner Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 179–186 (German). MR 3069652, DOI 10.1007/BF02940722
- Jacques Darné, Martin Palmer, and Arthur Soulié, When the lower central series stops: a comprehensive study for braid groups and their relatives, Mem. Amer. Math. Soc., To appear, https://www.ams.org/cgi-bin/mstrack/accepted_papers/memo, arXiv:2201.03542, 2022.
- James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2001. MR 1841974, DOI 10.1090/gsm/035
- Aurélien Djament, Antoine Touzé, and Christine Vespa, Décompositions à la Steinberg sur une catégorie additive, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 2, 427–516 (French, with English and French summaries). MR 4598727, DOI 10.24033/asens.2538
- Aurélien Djament and Christine Vespa, Foncteurs faiblement polynomiaux, Int. Math. Res. Not. IMRN 2 (2019), 321–391 (French, with English and French summaries). MR 3903561, DOI 10.1093/imrn/rnx099
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49–139. MR 65162, DOI 10.2307/1969702
- D. B. A. Epstein, Curves on $2$-manifolds and isotopies, Acta Math. 115 (1966), 83–107. MR 214087, DOI 10.1007/BF02392203
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, and Andrei Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), no. 2, 663–728. MR 1726705, DOI 10.2307/121092
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821
- Daniel Grayson, Higher algebraic $K$-theory. II (after Daniel Quillen), Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin-New York, 1976, pp. 217–240. MR 574096
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- Reinhard Häring-Oldenburg and Sofia Lambropoulou, Knot theory in handlebodies, J. Knot Theory Ramifications 11 (2002), no. 6, 921–943. Knots 2000 Korea, Vol. 3 (Yongpyong). MR 1936243, DOI 10.1142/S0218216502002050
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Nikolai V. Ivanov, On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 149–194. MR 1234264, DOI 10.1090/conm/150/01290
- Craig Jackson and Thomas Kerler, The Lawrence-Krammer-Bigelow representations of the braid groups via $U_q(\mathfrak {sl}_2)$, Adv. Math. 228 (2011), no. 3, 1689–1717. MR 2824566, DOI 10.1016/j.aim.2011.06.027
- Toshitake Kohno, Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 4, 144–147. MR 846350
- Toshitake Kohno, One-parameter family of linear representations of Artin’s braid groups, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 189–200. MR 948243, DOI 10.2969/aspm/01210189
- Daan Krammer, Braid groups are linear, Ann. of Math. (2) 155 (2002), no. 1, 131–156. MR 1888796, DOI 10.2307/3062152
- R. J. Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990), no. 1, 141–191. MR 1086755
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Dan Margalit, Problems, questions, and conjectures about mapping class groups, Breadth in contemporary topology, Proc. Sympos. Pure Math., vol. 102, Amer. Math. Soc., Providence, RI, 2019, pp. 157–186. MR 3967367, DOI 10.1090/pspum/102/12
- Jules Martel, A homological model for $U_q\mathfrak {sl}2$ Verma modules and their braid representations, Geom. Topol. 26 (2022), no. 3, 1225–1289. MR 4466648, DOI 10.2140/gt.2022.26.1225
- Tetsuhiro Moriyama, The mapping class group action on the homology of the configuration spaces of surfaces, J. Lond. Math. Soc. (2) 76 (2007), no. 2, 451–466. MR 2363426, DOI 10.1112/jlms/jdm077
- Martin Palmer, A comparison of twisted coefficient systems, arXiv:1712.06310, 2017.
- Martin Palmer and Arthur Soulié, Irreducibility of surface braid and mapping class group representations, In preparation.
- Martin Palmer and Arthur Soulié, The pro-nilpotent Lawrence-Krammer-Bigelow representation, J. Pure Appl. Algebra 229 (2025), no. 6, Paper No. 107952. MR 4885633, DOI 10.1016/j.jpaa.2025.107952
- Martin Palmer and Arthur Soulié, Annex file to the present article, https://mdp.ac/papers/polynomiality/annex-file.pdf, arXiv:2302.08827v3/anc, 2024.
- Martin Palmer and Arthur Soulié, Topological representations of motion groups and mapping class groups—a unified functorial construction, Ann. H. Lebesgue 7 (2024), 409–519 (English, with English and French summaries). MR 4799903
- Oscar Randal-Williams and Nathalie Wahl, Homological stability for automorphism groups, Adv. Math. 318 (2017), 534–626. MR 3689750, DOI 10.1016/j.aim.2017.07.022
- Takuya Sakasai, A survey of Magnus representations for mapping class groups and homology cobordisms of surfaces, Handbook of Teichmüller theory. Volume III, IRMA Lect. Math. Theor. Phys., vol. 17, Eur. Math. Soc., Zürich, 2012, pp. 531–594. MR 2952771, DOI 10.4171/103-1/10
- Arthur Soulié, The Long-Moody construction and polynomial functors, Ann. Inst. Fourier (Grenoble) 69 (2019), no. 4, 1799–1856 (English, with English and French summaries). MR 4010870, DOI 10.5802/aif.3282
- Arthur Soulié, Generalized Long-Moody functors, Algebr. Geom. Topol. 22 (2022), no. 4, 1713–1788. MR 4495668, DOI 10.2140/agt.2022.22.1713
- Andreas Stavrou, Cohomology of configuration spaces of surfaces as mapping class group representations, Trans. Amer. Math. Soc. 376 (2023), no. 4, 2821–2852. MR 4557882, DOI 10.1090/tran/8804
- Masaaki Suzuki, Geometric interpretation of the Magnus representation of the mapping class group, Kobe J. Math. 22 (2005), no. 1-2, 39–47. MR 2203329
Similar Articles
- Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 18A22, 20C07, 20C12, 20F36, 57K20, 18A25, 18M15, 20J05, 55N25, 55R80, 57M07, 57M10
- Retrieve articles in all journals with MSC (2020): 18A22, 20C07, 20C12, 20F36, 57K20, 18A25, 18M15, 20J05, 55N25, 55R80, 57M07, 57M10
Bibliographic Information
- Martin Palmer
- Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom; and Institutul de Matematică Simion Stoilow al Academiei Române, 21 Calea Grivitei, 010702 Bucureşti, Romania
- MR Author ID: 1015147
- ORCID: 0000-0002-1449-5767
- Email: m.d.palmer-anghel@leeds.ac.uk, mpanghel@imar.ro
- Arthur Soulié
- Affiliation: Normandie Univ., UNICAEN, CNRS, LMNO, 14000 Caen, France
- ORCID: 0000-0002-0157-4298
- Email: artsou@hotmail.fr, arthur.soulie@unicaen.fr
- Received by editor(s): February 23, 2024
- Received by editor(s) in revised form: October 17, 2024, December 11, 2024, and December 17, 2024
- Published electronically: May 1, 2025
- Additional Notes: The first author was partially supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-2798, within PNCDI III. The second author was partially supported by a Rankin-Sneddon Research Fellowship of the University of Glasgow, by the Institute for Basic Science IBS-R003-D1 and by the ANR Projects ChroK ANR-16-CE40-0003 and AlMaRe ANR-19-CE40-0001-01. The authors were able to make significant progress on the present article thanks to research visits to Glasgow and Bucharest, funded respectively by the School of Mathematics and Statistics of the University of Glasgow and the above-mentioned grant PN-III-P4-ID-PCE-2020-2798.
- © Copyright 2025 by the authors
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 18A22, 20C07, 20C12, 20F36, 57K20; Secondary 18A25, 18M15, 20J05, 55N25, 55R80, 57M07, 57M10
- DOI: https://doi.org/10.1090/tran/9409