Submanifolds with boundary and Stokes’ Theorem in Heisenberg groups
HTML articles powered by AMS MathViewer
- by Marco Di Marco, Antoine Julia, Sebastiano Nicolussi Golo and Davide Vittone;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9410
- Published electronically: February 18, 2025
- HTML | PDF | Request permission
Abstract:
We introduce and study the notion of $C^1_\mathbb {H}$-regular submanifold with boundary in sub-Riemannian Heisenberg groups. As an application, we prove a version of Stokes’ Theorem for $C^1_\mathbb {H}$-regular submanifolds with boundary that takes into account Rumin’s complex of differential forms in Heisenberg groups.References
- Luigi Ambrosio, Francesco Serra Cassano, and Davide Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 (2006), no. 2, 187–232. MR 2223801, DOI 10.1007/BF02922114
- Gabriella Arena and Raul Serapioni, Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs, Calc. Var. Partial Differential Equations 35 (2009), no. 4, 517–536. MR 2496655, DOI 10.1007/s00526-008-0218-x
- Z. Balogh, A. Kozhevnikov, and P. Pansu, Hölder maps from Euclidean spaces to Carnot groups, 2017. Preprint available online at https://www.imo.universite-paris-saclay.fr/~pierre.pansu/RnCarnot.pdf.
- Francesco Bigolin and Francesco Serra Cassano, Distributional solutions of Burgers’ equation and intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), no. 2, 561–568. MR 2600502, DOI 10.1016/j.jmaa.2009.11.042
- Francesco Bigolin and Francesco Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), no. 1, 69–97. MR 2604618, DOI 10.1515/ACV.2010.004
- Francesco Bigolin and Davide Vittone, Some remarks about parametrizations of intrinsic regular surfaces in the Heisenberg group, Publ. Mat. 54 (2010), no. 1, 159–172. MR 2603594, DOI 10.5565/PUBLMAT_{5}4110_{0}9
- Robert Bryant, Phillip Griffiths, and Daniel Grossman, Exterior differential systems and Euler-Lagrange partial differential equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2003. MR 1985469
- Giovanni Canarecci, Notion of $\Bbb H$-orientability for surfaces in the Heisenberg group $\Bbb H^n$, Differential Geom. Appl. 74 (2021), Paper No. 101701, 19. MR 4170735, DOI 10.1016/j.difgeo.2020.101701
- Giovanni Canarecci, Sub-Riemannian currents and slicing of currents in the Heisenberg group $\Bbb {H}^n$, J. Geom. Anal. 31 (2021), no. 5, 5166–5200. MR 4244901, DOI 10.1007/s12220-020-00474-3
- G. Citti and M. Manfredini, Implicit function theorem in Carnot-Carathéodory spaces, Commun. Contemp. Math. 8 (2006), no. 5, 657–680. MR 2263950, DOI 10.1142/S0219199706002234
- Francesca Corni, Intrinsic regular surfaces of low codimension in Heisenberg groups, Ann. Fenn. Math. 46 (2021), no. 1, 79–121. MR 4277801, DOI 10.5186/aasfm.2021.4605
- Francesca Corni and Valentino Magnani, Area formula for regular submanifolds of low codimension in Heisenberg groups, Adv. Calc. Var. 16 (2023), no. 3, 665–688. MR 4609804, DOI 10.1515/acv-2021-0049
- F. Corni and V. Magnani, Area of intrinsic graphs in homogeneous groups, arXiv:2311.06638, 2023.
- Di Donato, D. Intrinsic differentiability and Intrinsic Regular Surfaces in Carnot groups, 2017. PhD Thesis available online at http://eprints-phd.biblio.unitn.it/2660/1/TesiFinaleDottorato_DiDonatoDaniela.pdf.
- Daniela Di Donato, Katrin Fässler, and Tuomas Orponen, Metric rectifiability of $\Bbb {H}$-regular surfaces with Hölder continuous horizontal normal, Int. Math. Res. Not. IMRN 22 (2022), 17909–17975. MR 4514458, DOI 10.1093/imrn/rnab227
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3409135, DOI 10.1201/b18333
- Véronique Fischer and Francesca Tripaldi, An alternative construction of the Rumin complex on homogeneous nilpotent Lie groups, Adv. Math. 429 (2023), Paper No. 109192, 39. MR 4613357, DOI 10.1016/j.aim.2023.109192
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 657581
- Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), no. 3, 479–531. MR 1871966, DOI 10.1007/s002080100228
- Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), no. 1, 152–203. MR 2313532, DOI 10.1016/j.aim.2006.07.015
- Bruno Franchi, Nicoletta Tchou, and Maria Carla Tesi, Div-curl type theorem, $H$-convergence and Stokes formula in the Heisenberg group, Commun. Contemp. Math. 8 (2006), no. 1, 67–99. MR 2208811, DOI 10.1142/S0219199706002039
- Antoine Julia, Sebastiano Nicolussi Golo, and Davide Vittone, Area of intrinsic graphs and coarea formula in Carnot groups, Math. Z. 301 (2022), no. 2, 1369–1406. MR 4418324, DOI 10.1007/s00209-021-02916-2
- Antoine Julia, Sebastiano Nicolussi Golo, and Davide Vittone, Lipschitz functions on submanifolds of Heisenberg groups, Int. Math. Res. Not. IMRN 9 (2023), 7399–7422. MR 4584704, DOI 10.1093/imrn/rnac066
- Antonio Lerario and Francesca Tripaldi, Multicomplexes on Carnot groups and their associated spectral sequence, J. Geom. Anal. 33 (2023), no. 7, Paper No. 199, 22. MR 4578192, DOI 10.1007/s12220-023-01259-0
- Valentino Magnani, Towards a theory of area in homogeneous groups, Calc. Var. Partial Differential Equations 58 (2019), no. 3, Paper No. 91, 39. MR 3947860, DOI 10.1007/s00526-019-1539-7
- Michel Rumin, Un complexe de formes différentielles sur les variétés de contact, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 401–404 (French, with English summary). MR 1046521
- Michel Rumin, Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994), no. 2, 281–330 (French). MR 1267892
- F. Tripaldi, The Rumin complex on nilpotent Lie groups, arXiv:2009.10154, 2020.
- Davide Vittone, Lipschitz graphs and currents in Heisenberg groups, Forum Math. Sigma 10 (2022), Paper No. e6, 104. MR 4377000, DOI 10.1017/fms.2021.84
Bibliographic Information
- Marco Di Marco
- Affiliation: Dipartimento di Matematica “T. Levi-Civita”, via Trieste 63, 35121 Padova, Italy
- ORCID: 0009-0003-0225-4602
- Email: marco.dimarco@phd.unipd.it
- Antoine Julia
- Affiliation: Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405 Orsay, France
- MR Author ID: 1422922
- Email: antoine.julia@universite-paris-saclay.fr
- Sebastiano Nicolussi Golo
- Affiliation: Tempio e Monastero Zen Sōtō Shōbōzan Fudenji, Salsomaggiore Terme, PR, Italy
- Address at time of publication: University of Fribourg, Chemin du Musée 23, 1700 Fribourg, Switzerland
- MR Author ID: 1047689
- ORCID: 0000-0002-3773-6471
- Email: sebastiano2.72@gmail.com
- Davide Vittone
- Affiliation: Dipartimento di Matematica “T. Levi-Civita”, via Trieste 63, 35121 Padova, Italy; and School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, 08540 New Jersey
- MR Author ID: 784694
- ORCID: 0000-0003-4911-7405
- Email: davide.vittone@unipd.it
- Received by editor(s): April 15, 2024
- Received by editor(s) in revised form: December 22, 2024
- Published electronically: February 18, 2025
- Additional Notes: The first author and last author were supported by University of Padova and GNAMPA of INdAM. The last author was also supported by PRIN 2022PJ9EFL “Geometric Measure Theory: Structure of Singular Measures, Regularity Theory and Applications in the Calculus of Variations”. Part of this work was written when the fourth author was a member of the Institute for Advanced Study in Princeton: he was supported from the National Science Foundation Grant No. DMS-1926686 and the last author wishes to thank the Institute for the support as well as for the pleasant and exceptionally stimulating atmosphere. The third author was partially supported by the Swiss National Science Foundation (grant 200021-204501 “Regularity of sub-Riemannian geodesics and applications”), by the European Research Council (ERC Starting Grant 713998 GeoMeG “Geometry of Metric Groups”), by the Academy of Finland (grant 288501 “Geometry of subRiemannian groups”, grant 322898 “Sub-Riemannian Geometry via Metric-geometry and Lie- group Theory”, grant 328846 “Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups”, grant 314172 “Quantitative rectifiability in Euclidean and non-Euclidean spaces”).
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 53C17, 26B20; Secondary 53C65, 58C35
- DOI: https://doi.org/10.1090/tran/9410