Infinitesimal rational actions
HTML articles powered by AMS MathViewer
- by Bianca Gouthier;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9413
- Published electronically: April 3, 2025
- HTML | PDF | Request permission
Abstract:
For any finite $k$-group scheme $G$ acting rationally on a $k$-variety, if the action is generically free then the dimension of $Lie(G)$ is upper bounded by the dimension of the variety. We show that this is the only obstruction when $k$ is a perfect field of positive characteristic and $G$ is infinitesimal commutative trigonalizable. We also give necessary conditions to have faithful rational actions of infinitesimal commutative trigonalizable group schemes on varieties, and (different) sufficient conditions in the unipotent case over a perfect field.References
- Jean-Pierre Serre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 37–52 (French). MR 231831, DOI 10.1007/BF02684589
- Lucile Bégueri, Schéma d’automorphisms. Application à l’étude d’extensions finies radicielles, Bull. Sci. Math. (2) 93 (1969), 89–111 (French). MR 257047
- Grégory Berhuy and Giordano Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279–330. MR 2029168, DOI 10.4171/dm/145
- Sylvain Brochard and Ariane Mézard, About de Smit’s question on flatness, Math. Z. 267 (2011), no. 1-2, 385–401. MR 2772256, DOI 10.1007/s00209-009-0624-6
- N. Bourbaki, Algebra. II. Chapters 4–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964
- J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159–179. MR 1457337, DOI 10.1023/A:1000144403695
- Michel Brion, Actions of finite group schemes on curves, Pure Appl. Math. Q. 20 (2024), no. 3, 1065–1095. MR 4761532, DOI 10.4310/pamq.2024.v20.n3.a2
- Stephen U. Chase, On the automorphism scheme of a purely inseparable field extension, Ring theory (Proc. Conf., Park City, Utah, 1971) Academic Press, New York-London, 1972, pp. 75–106. MR 354629
- Michel Demazure, Lectures on $p$-divisible groups, Lecture Notes in Mathematics, vol. 302, Springer-Verlag, Berlin, 1986. Reprint of the 1972 original. MR 883960
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 302656
- A. J. de Jong and F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000), no. 1, 209–241. MR 1703336, DOI 10.1090/S0894-0347-99-00322-7
- I. V. Dolgachev, On elements of order $p^s$ in the plane Cremona group over a field of characteristic $p$, Tr. Mat. Inst. Steklova 264 (2009), no. Mnogomernaya Algebraicheskaya Geometriya, 55–62; English transl., Proc. Steklov Inst. Math. 264 (2009), no. 1, 48–55. MR 2590834, DOI 10.1134/S0081543809010064
- Igor V. Dolgachev, Finite subgroups of the plane Cremona group, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 1–49. MR 2732091, DOI 10.2969/aspm/06010001
- Najmuddin Fakhruddin, Finite group schemes of essential dimension one, Doc. Math. 25 (2020), 55–64. MR 4077548, DOI 10.4171/dm/737
- Bianca Gouthier, Infinitesimal commutative unipotent group schemes with one-dimensional Lie algebra, arXiv:2409.11997 [math.AG], 2024.
- Bianca Gouthier and Dajano Tossici, Unexpected subgroup schemes of $\mathrm {PGL}_{2,k}$ in characteristic $2$, arXiv:2403.09469 [math.AG], 2024.
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field. MR 3729270, DOI 10.1017/9781316711736
- Hideyuki Matsumura and Frans Oort, Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1–25. MR 217090, DOI 10.1007/BF01404578
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037
- F. Oort, Commutative group schemes, Lecture Notes in Mathematics, vol. 15, Springer-Verlag, Berlin-New York, 1966. MR 213365, DOI 10.1007/BFb0097479
- Frans Oort, Which abelian surfaces are products of elliptic curves?, Math. Ann. 214 (1975), 35–47. MR 364264, DOI 10.1007/BF01428253
- Frans Oort, Minimal $p$-divisible groups, Ann. of Math. (2) 161 (2005), no. 2, 1021–1036. MR 2153405, DOI 10.4007/annals.2005.161.1021
- T. H. M. Smits, Nilpotent $S$-derivations, Indag. Math. 30 (1968), 72–86. Nederl. Akad. Wetensch. Proc. Ser. A 71. MR 231809, DOI 10.1016/S1385-7258(68)50009-X
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 252485
- Dajano Tossici, Essential dimension of inifinitesimal commutative unipotent group schemes, Boll. Unione Mat. Ital. 12 (2019), no. 4, 575–581. MR 4022294, DOI 10.1007/s40574-019-00192-x
- Dajano Tossici and Angelo Vistoli, On the essential dimension of infinitesimal group schemes, Amer. J. Math. 135 (2013), no. 1, 103–114. MR 3022958, DOI 10.1353/ajm.2013.0007
- William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117, DOI 10.1007/978-1-4612-6217-6
Bibliographic Information
- Bianca Gouthier
- Affiliation: Institut de Mathématiques de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
- Address at time of publication: Mathematical Institute, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- MR Author ID: 1610667
- Email: bianca.gouthier@hhu.de
- Received by editor(s): February 23, 2024
- Received by editor(s) in revised form: September 18, 2024, December 18, 2024, December 21, 2024, and January 9, 2025
- Published electronically: April 3, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 14L15, 14L30, 14L17, 16T05, 16T10; Secondary 14E07, 14Kxx
- DOI: https://doi.org/10.1090/tran/9413