Divergent geodesics in the universal Teichmüller space
HTML articles powered by AMS MathViewer
- by Xinlong Dong and Hrant Hakobyan;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9430
- Published electronically: May 1, 2025
- HTML | PDF | Request permission
Abstract:
Thurston boundary of the universal Teichmüller space $T(\mathbb {D})$ is the space $PML_{bdd}(\mathbb {D})$ of projective bounded measured laminations of $\mathbb {D}$. A geodesic ray in $T(\mathbb {D})$ is of generalized Teichmüller type if it shrinks the vertical foliation of a holomorphic quadratic differential. We provide the first examples of generalized Teichmüller rays which diverge near Thurston boundary $PML_{bdd}(\mathbb {D})$. Moreover, for every $k\geq 1$ we construct examples of rays with limit sets homeomorphic to $k$-dimensional cubes. For the latter result we utilize the classical Kronecker approximation theorem from number theory which states that if $\theta _1,\ldots ,\theta _k$ are rationally independent reals then the sequence $(\{\theta _1 n\},\ldots ,\{\theta _k n\})$ is dense in the $k$-torus $\mathbb {T}^k$.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162. MR 931208, DOI 10.1007/BF01393996
- Francis Bonahon and Dragomir Šarić, A Thurston boundary for infinite-dimensional Teichmüller spaces, Math. Ann. 380 (2021), no. 3-4, 1119–1167. MR 4297183, DOI 10.1007/s00208-021-02148-z
- Michael Brin and Garrett Stuck, Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002. MR 1963683, DOI 10.1017/CBO9780511755316
- Jeffrey Brock, Christopher Leininger, Babak Modami, and Kasra Rafi, Limit sets of Weil-Petersson geodesics, Int. Math. Res. Not. IMRN 24 (2019), 7604–7658. MR 4043830, DOI 10.1093/imrn/rny002
- Jeffrey Brock, Christopher Leininger, Babak Modami, and Kasra Rafi, Limit sets of Weil-Petersson geodesics with nonminimal ending laminations, J. Topol. Anal. 12 (2020), no. 1, 1–28. MR 4080092, DOI 10.1142/S1793525319500456
- Jeffrey Brock, Christopher Leininger, Babak Modami, and Kasra Rafi, Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, II, J. Reine Angew. Math. 758 (2020), 1–66. MR 4048441, DOI 10.1515/crelle-2017-0024
- Jon Chaika, Howard Masur, and Michael Wolf, Limits in $\mathcal {PMF}$ of Teichmüller geodesics, J. Reine Angew. Math. 747 (2019), 1–44. MR 3905128, DOI 10.1515/crelle-2016-0017
- A. Fletcher and V. Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Mathematics, vol. 11, Oxford University Press, Oxford, 2007. MR 2269887
- Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR 1730906, DOI 10.1090/surv/076
- John B. Garnett and Donald E. Marshall, Harmonic measure, New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge, 2005. MR 2150803, DOI 10.1017/CBO9780511546617
- Hrant Hakobyan and Dragomir Šarić, Vertical limits of graph domains, Proc. Amer. Math. Soc. 144 (2016), no. 3, 1223–1234. MR 3447674, DOI 10.1090/proc12780
- Hrant Hakobyan and Dragomir Šarić, Limits of Teichmüller geodesics in the universal Teichmüller space, Proc. Lond. Math. Soc. (3) 116 (2018), no. 6, 1599–1628. MR 3816390, DOI 10.1112/plms.12125
- Hrant Hakobyan and Dragomir Šarić, A Thurston boundary and visual sphere of the universal Teichmüller space, J. Anal. Math. 143 (2021), no. 2, 681–721. MR 4299173, DOI 10.1007/s11854-021-0166-3
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 344463
- Christopher Leininger, Anna Lenzhen, and Kasra Rafi, Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine Angew. Math. 737 (2018), 1–32. MR 3781329, DOI 10.1515/crelle-2015-0040
- Anna Lenzhen, Teichmüller geodesics that do not have a limit in ${\scr {PMF}}$, Geom. Topol. 12 (2008), no. 1, 177–197. MR 2377248, DOI 10.2140/gt.2008.12.177
- Anna Lenzhen, Babak Modami, and Kasra Rafi, Teichmüller geodesics with $d$-dimensional limit sets, J. Mod. Dyn. 12 (2018), 261–283. MR 3915549, DOI 10.3934/jmd.2018010
- Hideki Miyachi and Dragomir Šarić, Uniform weak$^*$ topology and earthquakes in the hyperbolic plane, Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1123–1148. MR 3004100, DOI 10.1112/plms/pds026
- Dragomir Šarić, Geodesic currents and Teichmüller space, Topology 44 (2005), no. 1, 99–130. MR 2104004, DOI 10.1016/j.top.2004.05.001
- Kurt Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises. II, Comment. Math. Helv. 39 (1964), 77–89 (German). MR 176071, DOI 10.1007/BF02566945
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 454009
Bibliographic Information
- Xinlong Dong
- Affiliation: Department of Mathematics, Kingsborough CC - CUNY, Brooklyn, New York 11235
- MR Author ID: 1587508
- Email: xinlong.dong@kbcc.cuny.edu
- Hrant Hakobyan
- Affiliation: Department of Mathematics, Kansas State University, 1228 N. Martin Luther King Jr. Drive, Manhattan, Kansas 66506
- MR Author ID: 812939
- Email: hakobyan@math.ksu.edu
- Received by editor(s): July 1, 2024
- Received by editor(s) in revised form: January 23, 2025, and February 3, 2025
- Published electronically: May 1, 2025
- Additional Notes: The first author was partially supported by a PSC-CUNY research grant.
The second author was partially supported by Simons Foundation Collaboration Grant, award ID: 638572. - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 30F60, 30C62
- DOI: https://doi.org/10.1090/tran/9430