Plectic points and Hida-Rankin $p$-adic $L$-functions
HTML articles powered by AMS MathViewer
- by Víctor Hernández Barrios and Santiago Molina Blanco;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9432
- Published electronically: May 1, 2025
- HTML | PDF | Request permission
Abstract:
Plectic points were introduced by Fornea and Gehrmann [Adv. Math. 414 (2023)] as certain tensor products of local points on elliptic curves over arbitrary number fields $F$. They are constructed in rank $r\leq [F:\mathbb {Q}]$-situations, and they conjecturally come from $p$-adic regulators of basis of the Mordell-Weil group defined over dihedral extensions of $F$.
In this article we define anticyclotomic $p$-adic L-functions with variables of type weight and level attached to a family of overconvergent modular symbols defined over totally real fields $F$ and a quadratic extension $K/F$. Their restriction to the weight space provides Hida-Rankin $p$-adic L-functions.
If such a family passes through an overconvergent modular symbol attached to a modular elliptic curve $E$, we obtain a $p$-adic Gross-Zagier formula that computes higher derivatives of such Hida-Rankin $p$-adic L-functions in terms of plectic points. This result generalizes that of Bertolini and Darmon [Ann. of Math. (2) 170 (2009), pp. 343–370], which has been key to the recent approach towards the algebraicity of Darmon points.
References
- Daniel Barrera, Mladen Dimitrov, and Andrei Jorza, $p$-adic $L$-functions of Hilbert cusp forms and the trivial zero conjecture, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 10, 3439–3503. MR 4432904, DOI 10.4171/jems/1165
- John Bergdall and David Hansen, On $p$-adic $L$-functions for Hilbert modular forms, Mem. Amer. Math. Soc. 298 (2024), no. 1489, v+125. MR 4772264, DOI 10.1090/memo/1489
- Massimo Bertolini and Henri Darmon, The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. of Math. (2) 170 (2009), no. 1, 343–370. MR 2521118, DOI 10.4007/annals.2009.170.343
- Massimo Bertolini, Henri Darmon, Víctor Rotger, Marco Seveso, and Rodolfo Venerucci, Heegner points, stark-heegner points and diagonal classes, to appear in Asterisque (2021).
- Santiago Molina, Anticyclotomic $p$-adic $L$-functions and the exceptional zero phenomenon, Trans. Amer. Math. Soc. 372 (2019), no. 4, 2659–2714. MR 3988589, DOI 10.1090/tran/7646
- N. Bourbaki, Algèbre, chapitre 10. Algèbre homologique, Springer, Berlin, Heidelberg, 1980, \PrintDOI{https://doi.org/10.1007/978-3-540-34493-3}.
- Li Cai, Jie Shu, and Ye Tian, Explicit Gross-Zagier and Waldspurger formulae, Algebra Number Theory 8 (2014), no. 10, 2523–2572. MR 3298547, DOI 10.2140/ant.2014.8.2523
- Henri Darmon, Integration on $\scr H_p\times \scr H$ and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589–639. MR 1884617, DOI 10.2307/3062142
- Samit Dasgupta, Stark-Heegner points on modular Jacobians, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 3, 427–469 (English, with English and French summaries). MR 2166341, DOI 10.1016/j.ansens.2005.03.002
- Yiwen Ding, Simple ${\mathcal L}$-invariants for $\textrm {GL}_n$, Trans. Amer. Math. Soc. 372 (2019), no. 11, 7993–8042. MR 4029688, DOI 10.1090/tran/7859
- Michele Fornea and Lennart Gehrmann, On the algebraicity of polyquadratic plectic points, Int. Math. Res. Not. IMRN 22 (2023), 19237–19265. MR 4669801, DOI 10.1093/imrn/rnad091
- Michele Fornea and Lennart Gehrmann, Plectic Stark-Heegner points, Adv. Math. 414 (2023), Paper No. 108861, 42. MR 4536125, DOI 10.1016/j.aim.2023.108861
- Jérôme Gärtner, Darmon’s points and quaternionic Shimura varieties, Canad. J. Math. 64 (2012), no. 6, 1248–1288. MR 2994664, DOI 10.4153/CJM-2011-086-5
- Lennart Gehrmann and Maria Rosaria Pati, $L$-invariants for cohomological representations of $\textrm {PGL}(2)$ over arbitrary number fields, Forum Math. Sigma 12 (2024), Paper No. e71, 27. MR 4752130, DOI 10.1017/fms.2024.51
- Lennart Gehrmann and Giovanni Rosso, Big principal series, $p$-adic families and $\mathcal L$-invariants, Compos. Math. 158 (2022), no. 2, 409–436. MR 4413750, DOI 10.1112/s0010437x2200731x
- Matthew Greenberg, Stark-Heegner points and the cohomology of quaternionic Shimura varieties, Duke Math. J. 147 (2009), no. 3, 541–575. MR 2510743, DOI 10.1215/00127094-2009-017
- Ralph Greenberg and Glenn Stevens, $p$-adic $L$-functions and $p$-adic periods of modular forms, Invent. Math. 111 (1993), no. 2, 407–447. MR 1198816, DOI 10.1007/BF01231294
- Xavier Guitart, Marc Masdeu, and Mehmet Haluk Şengün, Darmon points on elliptic curves over number fields of arbitrary signature, Proc. Lond. Math. Soc. (3) 111 (2015), no. 2, 484–518. MR 3384519, DOI 10.1112/plms/pdv033
- Xavier Guitart, Marc Masdeu, and Santiago Molina, An automorphic approach to Darmon points, Indiana Univ. Math. J. 69 (2020), no. 4, 1251–1274. MR 4124128, DOI 10.1512/iumj.2020.69.7949
- Víctor Hernández and Santiago Molina, Exceptional zero formulas for anticyclotomic $p$-adic l-functions, Preprint, 2021.
- Jan Kohlhaase and Benjamin Schraen, Homological vanishing theorems for locally analytic representations, Math. Ann. 353 (2012), no. 1, 219–258. MR 2910788, DOI 10.1007/s00208-011-0680-1
- Matteo Longo, Kimball Martin, and Yan Hu, Rationality of Darmon points over genus fields of non-maximal orders, Ann. Math. Qué. 44 (2020), no. 1, 173–195 (English, with English and French summaries). MR 4071876, DOI 10.1007/s40316-019-00116-3
- B. Mazur and J. Tate, Refined conjectures of the “Birch and Swinnerton-Dyer type”, Duke Math. J. 54 (1987), no. 2, 711–750. MR 899413, DOI 10.1215/S0012-7094-87-05431-7
- Santiago Molina, Eichler-Shimura isomorphism and group cohomology on arithmetic groups, J. Number Theory 180 (2017), 280–296. MR 3679798, DOI 10.1016/j.jnt.2017.04.007
- Santiago Molina, Waldspurger formulas in higher cohomology, Preprint, arXiv:2309.11207, 2021.
- Santiago Molina, Squares of toric period integrals in higher cohomology, Preprint, arXiv:2201.00524, 2023.
- Robert Pollack and Glenn Stevens, Overconvergent modular symbols and $p$-adic $L$-functions, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 1–42 (English, with English and French summaries). MR 2760194, DOI 10.24033/asens.2139
- Hiroshi Saito, On Tunnell’s formula for characters of $\textrm {GL}(2)$, Compositio Math. 85 (1993), no. 1, 99–108. MR 1199206
- P. Schneider and U. Stuhler, The cohomology of $p$-adic symmetric spaces, Invent. Math. 105 (1991), no. 1, 47–122. MR 1109620, DOI 10.1007/BF01232257
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Stud., No. 70, Princeton Univ. Press, Princeton, NJ, 1971, pp. 77–169 (French). MR 385006
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- Jerrold B. Tunnell, Local $\epsilon$-factors and characters of $\textrm {GL}(2)$, Amer. J. Math. 105 (1983), no. 6, 1277–1307. MR 721997, DOI 10.2307/2374441
Bibliographic Information
- Víctor Hernández Barrios
- Affiliation: Universitat Politécnica de Catalunya, Barcelona, Spain
- ORCID: 0000-0002-3942-8405
- Email: victor.hernandez.barrios@upc.edu
- Santiago Molina Blanco
- Affiliation: Universitat de Lleida, Lleida, Spain
- MR Author ID: 887899
- ORCID: 0000-0001-9420-2807
- Email: santiago.molina@udl.edu
- Received by editor(s): April 21, 2022
- Received by editor(s) in revised form: September 21, 2023, April 12, 2024, and January 15, 2025
- Published electronically: May 1, 2025
- Additional Notes: Projects PID2022-137605NB-I00 and PID2021-124613OB-I00
This project had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 682152). The second author was also funded by Ministerio de Ciencia e innovación, project PID2022-137605NB-I00, and this paper was part of the R&D+i project PID2021-124613OB-I00 funded by MICIU/AEI/10.13039/501100011033 and FEDER, EU - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 11G05, 11G40, 11S40; Secondary 11F85
- DOI: https://doi.org/10.1090/tran/9432