On congruent isomorphisms for tori
HTML articles powered by AMS MathViewer
- by Anne-Marie Aubert and Sandeep Varma;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9437
- Published electronically: April 25, 2025
- PDF | Request permission
Abstract:
Let $F$ and $F’$ be two $l$-close nonarchimedean local fields, where $l$ is a positive integer, and let $\mathrm {T}$ and $\mathrm {T}’$ be two tori over $F$ and $F’$, respectively, such that their cocharacter lattices can be identified as modules over the “at most $l$-ramified” absolute Galois group $\Gamma _F/I_F^l \cong \Gamma _{F’}/I_{F’}^l$. In the spirit of the work of Kazhdan and Ganapathy, for every positive integer $m$ relative to which $l$ is large, we construct a congruent isomorphism $\mathrm {T}(F)/\mathrm {T}(F)_m \cong \mathrm {T}’(F’)/\mathrm {T}’(F’)_m$, where $\mathrm {T}(F)_m$ and $\mathrm {T}’(F’)_m$ are the minimal congruent filtration subgroups of $\mathrm {T}(F)$ and $\mathrm {T}’(F’)$, respectively, defined by J.-K. Yu. We prove that this isomorphism is functorial and compatible with both the isomorphism constructed by Chai and Yu and the Kottwitz homomorphism for tori. We show that, when $l$ is even larger relative to $m$, it moreover respects the local Langlands correspondence for tori.References
- Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 5–161 (1994). MR 1259429
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Ching-Li Chai and Jiu-Kang Yu, Congruences of Néron models for tori and the Artin conductor, Ann. of Math. (2) 154 (2001), no. 2, 347–382. With an appendix by Ehud de Shalit. MR 1865974, DOI 10.2307/3062100
- P. Deligne, Les corps locaux de caractéristique $p$, limites de corps locaux de caractéristique $0$, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 119–157 (French). MR 771673
- Ehud de Shalit, Appendix to: Congruences of Néron models for tori and the Artin conductor. Ann. of Math. (2), 154(2):347–382, 2001.
- Tanmay Deshpande and Saniya Wagh, Character sheaves on tori over local fields, Preprint, arXiv:2304.06622, 2023.
- Radhika Ganapathy, The local Langlands correspondence for $\rm GSp_4$ over local function fields, Amer. J. Math. 137 (2015), no. 6, 1441–1534. MR 3432266, DOI 10.1353/ajm.2015.0045
- Radhika Ganapathy, A Hecke algebra isomorphism over close local fields, Pacific J. Math. 319 (2022), no. 2, 307–332. MR 4482718, DOI 10.2140/pjm.2022.319.307
- D. Kazhdan, Representations of groups over close local fields, J. Analyse Math. 47 (1986), 175–179. MR 874049, DOI 10.1007/BF02792537
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- Tasho Kaletha and Gopal Prasad, Bruhat-Tits theory—a new approach, New Mathematical Monographs, vol. 44, Cambridge University Press, Cambridge, 2023. MR 4520154
- Manish Mishra, Langlands parameters associated to special maximal parahoric spherical representations, Proc. Amer. Math. Soc. 143 (2015), no. 5, 1933–1941. MR 3314103, DOI 10.1090/S0002-9939-2014-12392-6
- Manish Mishra and Basudev Pattanayak, A note on depth preservation, J. Ramanujan Math. Soc. 34 (2019), no. 4, 393–400. MR 4041880
- Arnaud Mayeux, Timo Richarz, and Matthieu Romagny, Néron blowups and low-degree cohomological applications, Algebr. Geom. 10 (2023), no. 6, 729–753. MR 4673395, DOI 10.14231/ag-2023-026
- Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. MR 1867431
- Jiu-Kang Yu, On the local Langlands correspondence for tori, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 177–183. MR 2508725, DOI 10.1090/fim/026/07
- Jiu-Kang Yu, Smooth models associated to concave functions in Bruhat-Tits theory, Autour des schémas en groupes. Vol. III, Panor. Synthèses, vol. 47, Soc. Math. France, Paris, 2015, pp. 227–258 (English, with English and French summaries). MR 3525846
Bibliographic Information
- Anne-Marie Aubert
- Affiliation: Sorbonne Université and Université Paris Cité, CNRS, IMJ-PRG, F-75005 Paris, France
- MR Author ID: 256498
- ORCID: 0000-0002-9613-9140
- Email: anne-marie.aubert@imj-prg.fr
- Sandeep Varma
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
- MR Author ID: 718388
- ORCID: 0000-0002-9613-9140
- Email: sandeepvarmav@gmail.com
- Received by editor(s): January 15, 2024
- Received by editor(s) in revised form: February 10, 2025
- Published electronically: April 25, 2025
- Additional Notes: The second author was supported by the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.01-0500.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 22E50
- DOI: https://doi.org/10.1090/tran/9437