Subspaces of separable $L_1$-preduals: $W_\alpha$ everywhere
HTML articles powered by AMS MathViewer
- by Emanuele Casini, Enrico Miglierina and Łukasz Piasecki;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9438
- Published electronically: April 3, 2025
- HTML | PDF | Request permission
Abstract:
The spaces $W_\alpha$ are the Banach spaces whose duals are isometric to $\ell _1$ and such that the standard basis of $\ell _1$ is $w^*$-convergent to $\alpha \in \ell _1$. The core result of our paper proves that an $\ell _1$-predual $X$ contains isometric copies of all $W_\alpha$, where the norm of $\alpha$ is controlled by the supremum of the norms of the $w^*$-cluster points of the extreme points of the closed unit ball in $\ell _1$. More precisely, for every $\ell _1$-predual $X$ we have \begin{equation*} r^*(X) ≔\sup \left \lbrace \left \|g^*\right \|: g^*\in \left (ext\, B_{\ell _1}\right )’\right \rbrace =\sup \left \lbrace \left \| \alpha \right \|: \, \alpha \in B_{\ell _1}, \, W_\alpha \subset X\right \rbrace . \end{equation*} We also prove that, for any $\varepsilon >0$, $X$ contains an isometric copy of some space $W_\alpha$ with $\left \| \alpha \right \|>r^*(X)- \varepsilon$, which is $(1+ \varepsilon )$-complemented in $X$. From these results we obtain several outcomes. First we provide a new characterization of $\ell _1$-preduals containing an isometric copy of a space of affine continuous functions on a Choquet simplex. Then we prove that an $\ell _1$-predual $X$ contains almost isometric copies of the space $c$ of convergent sequences if and only if $X^*$ lacks the stable $w^*$-fixed point property for nonexpansive mappings.References
- Dale E. Alspach, A $l_1$-predual which is not isometric to a quotient of $C(\alpha )$, Banach spaces (Mérida, 1992) Contemp. Math., vol. 144, Amer. Math. Soc., Providence, RI, 1993, pp. 9–14. MR 1209442, DOI 10.1090/conm/144/1209442
- Y. Benyamini, Separable $G$ spaces are isomorphic to $C(K)$ spaces, Israel J. Math. 14 (1973), 287–293. MR 333668, DOI 10.1007/BF02764890
- Emanuele Casini, Enrico Miglierina, and Łukasz Piasecki, Hyperplanes in the space of convergent sequences and preduals of $\ell _1$, Canad. Math. Bull. 58 (2015), no. 3, 459–470. MR 3372863, DOI 10.4153/CMB-2015-024-9
- Emanuele Casini, Enrico Miglierina, and Łukasz Piasecki, Separable Lindenstrauss spaces whose duals lack the weak$^*$ fixed point property for nonexpansive mappings, Studia Math. 238 (2017), no. 1, 1–16. MR 3640020, DOI 10.4064/sm8237-12-2016
- Emanuele Casini, Enrico Miglierina, and Łukasz Piasecki, Weak$^*$ fixed point property and the space of affine functions, Proc. Amer. Math. Soc. 149 (2021), no. 4, 1613–1620. MR 4242316, DOI 10.1090/proc/15327
- Emanuele Casini, Enrico Miglierina, and Łukasz Piasecki, Explicit models of $\ell _1$-preduals and the $\textrm {weak}^*$ fixed point property in $\ell _1$, Topol. Methods Nonlinear Anal. 63 (2024), no. 1, 39–51. MR 4730832, DOI 10.12775/tmna.2023.009
- Emanuele Casini, Enrico Miglierina, Łukasz Piasecki, and Roxana Popescu, Stability constants of the weak$^*$ fixed point property for the space $\ell _1$, J. Math. Anal. Appl. 452 (2017), no. 1, 673–684. MR 3628042, DOI 10.1016/j.jmaa.2017.02.039
- Emanuele Casini, Enrico Miglierina, Łukasz Piasecki, and Roxana Popescu, Weak$^*$ fixed point property in $\ell _1$ and polyhedrality in Lindenstrauss spaces, Studia Math. 241 (2018), no. 2, 159–172. MR 3744982, DOI 10.4064/sm8697-5-2017
- Emanuele Casini, Enrico Miglierina, Łukasz Piasecki, and Libor Veselý, Rethinking polyhedrality for Lindenstrauss spaces, Israel J. Math. 216 (2016), no. 1, 355–369. MR 3556971, DOI 10.1007/s11856-016-1412-8
- Tomás Domínguez Benavides, Maria A. Japón, and Jeimer Villada Bedoya, Linearly and directionally bounded weak-star closed sets and the AFPP, Israel J. Math. 230 (2019), no. 2, 509–526. MR 3940426, DOI 10.1007/s11856-018-1810-1
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Hicham Fakhoury, Préduaux de $L$-espace: Notion de centre, J. Functional Analysis 9 (1972), 189–207 (French). MR 303260, DOI 10.1016/0022-1236(72)90010-9
- Ioannis Gasparis, On contractively complemented subspaces of separable $L_1$-preduals, Israel J. Math. 128 (2002), 77–92. MR 1910376, DOI 10.1007/BF02785419
- Agnieszka Gergont and Łukasz Piasecki, On isomorphic embeddings of $c$ into $L_1$-preduals and some applications, J. Math. Anal. Appl. 492 (2020), no. 1, 124431, 11. MR 4128632, DOI 10.1016/j.jmaa.2020.124431
- Agnieszka Gergont and Łukasz Piasecki, Some topological and metric properties of the space of $\ell _1$-predual hyperplanes in $c$, Colloq. Math. 168 (2022), no. 2, 229–247. MR 4416007, DOI 10.4064/cm8561-7-2021
- A. Grothendieck, Une caractérisation vectorielle-métrique des espaces $L^1$, Canadian J. Math. 7 (1955), 552–561 (French). MR 76301, DOI 10.4153/CJM-1955-060-6
- M. Japón, Dual fixed point property on spaces of continuous functions under equivalent norms, J. Math. Anal. Appl. 479 (2019), no. 2, 2090–2103. MR 3987948, DOI 10.1016/j.jmaa.2019.07.042
- Maria A. Japón, The FPP for left reversible semigroups in $\ell _1$ endowed with different locally convex topologies, Ann. Funct. Anal. 7 (2016), no. 1, 127–135. MR 3449345, DOI 10.1215/20088752-3428140
- Maria A. Japón Pineda and Stanisław Prus, Fixed point property for general topologies in some Banach spaces, Bull. Austral. Math. Soc. 70 (2004), no. 2, 229–244. MR 2094291, DOI 10.1017/S0004972700034456
- John L. Kelley and Isaac Namioka, Linear topological spaces, Graduate Texts in Mathematics, No. 36, Springer-Verlag, New York-Heidelberg, 1976. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, and Kennan T. Smith; Second corrected printing. MR 394084
- Victor Klee, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243–267. MR 139073, DOI 10.1007/BF02546358
- H. Elton Lacey, On the classification of Lindenstrauss spaces, Pacific J. Math. 47 (1973), 139–145. MR 352957, DOI 10.2140/pjm.1973.47.139
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 493279, DOI 10.1007/978-3-642-65762-7
- A. J. Lazar, Polyhedral Banach spaces and extensions of compact operators, Israel J. Math. 7 (1969), 357–364. MR 256137, DOI 10.1007/BF02788867
- A. J. Lazar and J. Lindenstrauss, On Banach spaces whose duals are $L_{1}$ spaces, Israel J. Math. 4 (1966), 205–207. MR 206670, DOI 10.1007/BF02760079
- A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are $L_{1}$ spaces and their representing matrices, Acta Math. 126 (1971), 165–193. MR 291771, DOI 10.1007/BF02392030
- Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112. MR 179580
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 500056, DOI 10.1007/978-3-642-66557-8
- Joram Lindenstrauss and Daniel E. Wulbert, On the classification of the Banach spaces whose duals are $L_{1}$ spaces, J. Functional Analysis 4 (1969), 332–349. MR 250033, DOI 10.1016/0022-1236(69)90003-2
- Wolfgang Lusky, On separable Lindenstrauss spaces, J. Functional Analysis 26 (1977), no. 2, 103–120. MR 493274, DOI 10.1016/0022-1236(77)90006-4
- Miguel Martín and Abraham Rueda Zoca, Daugavet property in projective symmetric tensor products of Banach spaces, Banach J. Math. Anal. 16 (2022), no. 2, Paper No. 35, 32. MR 4405563, DOI 10.1007/s43037-022-00186-6
- E. Michael and A. Pełczyński, Separable Banach spaces which admit $l_{n}{}^{\infty }$ approximations, Israel J. Math. 4 (1966), 189–198. MR 211247, DOI 10.1007/BF02760077
- Łukasz Piasecki, On Banach space properties that are not invariant under the Banach-Mazur distance 1, J. Math. Anal. Appl. 467 (2018), no. 2, 1129–1147. MR 3842423, DOI 10.1016/j.jmaa.2018.07.063
- Łukasz Piasecki, On $\ell _1$-preduals distant by 1, Ann. Univ. Mariae Curie-Skłodowska Sect. A 72 (2018), no. 2, 41–56. MR 3893817, DOI 10.17951/a.2018.72.2.41
- Łukasz Piasecki and Jeimer Villada, Separable Lindenstrauss spaces whose duals do not contain weak* closed convex unbounded sets having the AFPP, Israel J. Math. 254 (2023), no. 1, 87–96. MR 4591827, DOI 10.1007/s11856-022-2388-1
- Z. Semadeni, Free compact convex sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 141–146 (English, with Russian summary). MR 190719
- M. Zippin, On some subspaces of Banach spaces whose duals are $L_{1}$ spaces, Proc. Amer. Math. Soc. 23 (1969), 378–385. MR 246094, DOI 10.1090/S0002-9939-1969-0246094-0
- M. Zippin, Correction to “On some subspaces of Banach spaces whose duals are $L_1$ spaces” [ MR0246094], Proc. Amer. Math. Soc. 146 (2018), no. 12, 5257–5262. MR 3866864, DOI 10.1090/proc/14196
Bibliographic Information
- Emanuele Casini
- Affiliation: Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, via Valleggio 11, 22100 Como, Italy
- MR Author ID: 45990
- Email: emanuele.casini@uninsubria.it
- Enrico Miglierina
- Affiliation: Dipartimento di Matematica per le scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore, Via Necchi 9, 20123 Milano, Italy
- MR Author ID: 651059
- ORCID: 0000-0003-3493-8198
- Email: enrico.miglierina@unicatt.it
- Łukasz Piasecki
- Affiliation: Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
- ORCID: 0000-0002-4996-8560
- Email: lukasz.piasecki@mail.umcs.pl
- Received by editor(s): March 8, 2024
- Received by editor(s) in revised form: December 16, 2024, and February 5, 2025
- Published electronically: April 3, 2025
- Additional Notes: The second author had been partially supported by GNAMPA-INDAM
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 46B04, 46B45, 47H10
- DOI: https://doi.org/10.1090/tran/9438