Nodal volumes as differentiable functionals of Gaussian fields
HTML articles powered by AMS MathViewer
- by Giovanni Peccati and Michele Stecconi;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9440
- Published electronically: May 1, 2025
- PDF | Request permission
Abstract:
We characterize the absolute continuity of the law and the Malliavin-Sobolev regularity of random nodal volumes associated with smooth Gaussian fields on generic $\mathcal {C}^2$ manifolds with arbitrary dimension. Our results extend and generalize the seminal contribution by Angst and Poly (2020) about stationary fields on Euclidean spaces and cover, in particular, the case of two-dimensional manifolds, possibly with boundary and corners. The main tools exploited in the proofs include the use of Gaussian measures on Banach spaces, Morse theory, and the characterization of Malliavin-Sobolev spaces in terms of ray absolute continuity. Several examples are analyzed in detail.References
- Miklos Abert, Nicolas Bergeron, and Etienne Le Masson, Eigenfunctions and random waves in the Benjamini-Schramm limit, Preprint, arXiv:1810.05601, 2018.
- Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- Nalini Anantharaman, Topologie des hypersurfaces nodales de fonctions aléatoires gaussiennes [d’après Nazarov et Sodin, Gayet et Welschinger], Astérisque 390 (2017), Exp. No. 1116, 369–408 (French). Séminaire Bourbaki. Vol. 2015/2016. Exposés 1104–1119. MR 3666032
- Michele Ancona, On the topology of random real complete intersections, J. Geom. Anal. 33 (2023), no. 1, Paper No. 32, 26. MR 4510510, DOI 10.1007/s12220-022-01092-x
- Michele Ancona, Exponential rarefaction of maximal real algebraic hypersurfaces, J. Eur. Math. Soc. (JEMS) 26 (2024), no. 4, 1423–1444. MR 4721035, DOI 10.4171/jems/1311
- Michele Ancona and Thomas Letendre, Roots of Kostlan polynomials: moments, strong law of large numbers and central limit theorem, Ann. H. Lebesgue 4 (2021), 1659–1703 (English, with English and French summaries). MR 4353974, DOI 10.5802/ahl.113
- Jürgen Angst, Viet-Hung Pham, and Guillaume Poly, Universality of the nodal length of bivariate random trigonometric polynomials, Trans. Amer. Math. Soc. 370 (2018), no. 12, 8331–8357. MR 3864378, DOI 10.1090/tran/7255
- Jürgen Angst and Guillaume Poly, On the absolute continuity of random nodal volumes, Ann. Probab. 48 (2020), no. 5, 2145–2175. MR 4152638, DOI 10.1214/19-AOP1418
- Michèle Audin and Mihai Damian, Morse theory and Floer homology, Universitext, Springer, London; EDP Sciences, Les Ulis, 2014. Translated from the 2010 French original by Reinie Erné. MR 3155456, DOI 10.1007/978-1-4471-5496-9
- Jean-Marc Azaïs and Mario Wschebor, Level sets and extrema of random processes and fields, John Wiley & Sons, Inc., Hoboken, NJ, 2009. MR 2478201, DOI 10.1002/9780470434642
- Augustin Banyaga and David Hurtubise, Lectures on Morse homology, Kluwer Texts in the Mathematical Sciences, vol. 29, Kluwer Academic Publishers Group, Dordrecht, 2004. MR 2145196, DOI 10.1007/978-1-4020-2696-6
- Vincent Beffara and Damien Gayet, Percolation of random nodal lines, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 131–176. MR 3735866, DOI 10.1007/s10240-017-0093-0
- Dmitry Beliaev, Michael McAuley, and Stephen Muirhead, A central limit theorem for the number of excursion set components of Gaussian fields, Ann. Probab. 52 (2024), no. 3, 882–922. MR 4736695, DOI 10.1214/23-aop1672
- Dmitry Beliaev, Michael McAuley, and Stephen Muirhead, Fluctuations of the number of excursion sets of planar Gaussian fields, Probab. Math. Phys. 3 (2022), no. 1, 105–144. MR 4420297, DOI 10.2140/pmp.2022.3.105
- Dmitry Beliaev, Michael McAuley, and Stephen Muirhead, A covariance formula for the number of excursion set components of Gaussian fields and applications, Ann. Inst. Henri Poincaré Probab. Stat. 61 (2025), no. 1, 713–745 (English, with English and French summaries). MR 4863058, DOI 10.1214/23-aihp1430
- Jacques Benatar, Domenico Marinucci, and Igor Wigman, Planck-scale distribution of nodal length of arithmetic random waves, J. Anal. Math. 141 (2020), no. 2, 707–749. MR 4179775, DOI 10.1007/s11854-020-0114-7
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083–2091. MR 489542
- M. V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A 35 (2002), no. 13, 3025–3038. MR 1913853, DOI 10.1088/0305-4470/35/13/301
- Corinne Berzin, Alain Latour, and José León, Kac-rice formula: a contemporary overview of the main results and applications, 2022.
- Patrick Billingsley, Convergence of probability measures, 2nd ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. A Wiley-Interscience Publication. MR 1700749, DOI 10.1002/9780470316962
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- Vladimir I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. MR 1642391, DOI 10.1090/surv/062
- Maciej Borodzik, András Némethi, and Andrew Ranicki, Morse theory for manifolds with boundary, Algebr. Geom. Topol. 16 (2016), no. 2, 971–1023. MR 3493413, DOI 10.2140/agt.2016.16.971
- Paul Breiding, Hanieh Keneshlou, and Antonio Lerario, Quantitative singularity theory for random polynomials, Int. Math. Res. Not. IMRN 8 (2022), 5685–5719. MR 4406118, DOI 10.1093/imrn/rnaa274
- Shirley Bromberg and Santiago López de Medrano, Sur le lemme de Morse et le lemme de séparation dans l’espace de Hilbert, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 9, 909–912 (French, with English and French summaries). MR 1218286
- Peter Bürgisser, Average Euler characteristic of random real algebraic varieties, C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 507–512 (English, with English and French summaries). MR 2375112, DOI 10.1016/j.crma.2007.10.013
- Valentina Cammarota and Domenico Marinucci, A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions, Ann. Probab. 46 (2018), no. 6, 3188–3228. MR 3857854, DOI 10.1214/17-AOP1245
- Yaiza Canzani and Boris Hanin, Local universality for zeros and critical points of monochromatic random waves, Comm. Math. Phys. 378 (2020), no. 3, 1677–1712. MR 4150887, DOI 10.1007/s00220-020-03826-w
- Federico Dalmao, Anne Estrade, and José R. León, On 3-dimensional Berry’s model, ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021), no. 1, 379–399. MR 4213863, DOI 10.30757/alea.v18-17
- Gauthier Dierickx, Ivan Nourdin, Giovanni Peccati, and Maurizia Rossi, Small scale CLTs for the nodal length of monochromatic waves, Comm. Math. Phys. 397 (2023), no. 1, 1–36. MR 4538280, DOI 10.1007/s00220-022-04422-w
- Hugo Duminil-Copin, Alejandro Rivera, Pierre-François Rodriguez, and Hugo Vanneuville, Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension $d\geq 3$, Ann. Probab. 51 (2023), no. 1, 228–276. MR 4515694, DOI 10.1214/22-aop1594
- O. Enchev and D. W. Stroock, Rademacher’s theorem for Wiener functionals, Ann. Probab. 21 (1993), no. 1, 25–33. MR 1207214
- Yan V. Fyodorov, Antonio Lerario, and Erik Lundberg, On the number of connected components of random algebraic hypersurfaces, J. Geom. Phys. 95 (2015), 1–20. MR 3357820, DOI 10.1016/j.geomphys.2015.04.006
- Louis Gass and Michele Stecconi, The number of critical points of a Gaussian field: finiteness of moments, Probab. Theory Related Fields 190 (2024), no. 3-4, 1167–1197. MR 4811822, DOI 10.1007/s00440-024-01273-5
- Damien Gayet and Jean-Yves Welschinger, Lower estimates for the expected Betti numbers of random real hypersurfaces, J. Lond. Math. Soc. (2) 90 (2014), no. 1, 105–120. MR 3245138, DOI 10.1112/jlms/jdu018
- Damien Gayet and Jean-Yves Welschinger, Expected topology of random real algebraic submanifolds, J. Inst. Math. Jussieu 14 (2015), no. 4, 673–702. MR 3394124, DOI 10.1017/S1474748014000115
- Damien Gayet and Jean-Yves Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 4, 733–772. MR 3474455, DOI 10.4171/JEMS/601
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- M. Hairer, An introduction to stoichastic pdes, https://arxiv.org/abs/0907.4178v2 (2023).
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822
- Maxime Ingremeau, Local weak limits of Laplace eigenfunctions, Tunis. J. Math. 3 (2021), no. 3, 481–515. MR 4258632, DOI 10.2140/tunis.2021.3.481
- Benoît Jubin, Intrinsic volumes of sublevel sets, Ann. Fac. Sci. Toulouse Math. (6) 32 (2023), no. 5, 911–938 (English, with English and French summaries). MR 4748460
- E. Kostlan, On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990) Springer, New York, 1993, pp. 419–431. MR 1246137
- Marie F. Kratz and José R. León, Central limit theorems for level functionals of stationary Gaussian processes and fields, J. Theoret. Probab. 14 (2001), no. 3, 639–672. MR 1860517, DOI 10.1023/A:1017588905727
- Manjunath Krishnapur, Pär Kurlberg, and Igor Wigman, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2) 177 (2013), no. 2, 699–737. MR 3010810, DOI 10.4007/annals.2013.177.2.8
- Nicolaas Hendrik Kuiper, Cr-functions near non-degenerate critical points, Universiteit van Amsterdam, 1970.
- François Laudenbach, A Morse complex on manifolds with boundary, Geom. Dedicata 153 (2011), 47–57. MR 2819662, DOI 10.1007/s10711-010-9555-y
- John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
- John M. Lee, Introduction to Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer, Cham, 2018. Second edition of [ MR1468735]. MR 3887684
- Giovanni Leoni, A first course in Sobolev spaces, 2nd ed., Graduate Studies in Mathematics, vol. 181, American Mathematical Society, Providence, RI, 2017. MR 3726909, DOI 10.1090/gsm/181
- A. Lerario and M. Stecconi, Differential topology of Gaussian random fields, Preprint, arXiv:1902.03805, 2019.
- Antonio Lerario and Erik Lundberg, Statistics on Hilbert’s 16th problem, Int. Math. Res. Not. IMRN 12 (2015), 4293–4321. MR 3356754, DOI 10.1093/imrn/rnu069
- Antonio Lerario, Domenico Marinucci, Maurizia Rossi, and Michele Stecconi, Geometry and topology of spin random fields, Anal. Math. Phys. 15 (2025), no. 2, Paper No. 48, 70. MR 4881667, DOI 10.1007/s13324-025-01046-w
- Antonio Lerario and Michele Stecconi, Maximal and typical topology of real polynomial singularities, Ann. Inst. Fourier (Grenoble) 74 (2024), no. 2, 589–626 (English, with English and French summaries). MR 4748181, DOI 10.5802/aif.3603
- Thomas Letendre, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal. 270 (2016), no. 8, 3047–3110. MR 3470435, DOI 10.1016/j.jfa.2016.01.007
- Thomas Letendre and Michele Ancona, Multijet bundles and application to the finiteness of moments for zeros of gaussian fields, 2023.
- Peter Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University Press, Cambridge, 2012. MR 2962229, DOI 10.1017/CBO9781139105798
- Alexander Logunov and Eugenia Malinnikova, Review of Yau’s conjecture on zero sets of Laplace eigenfunctions, Current developments in mathematics 2018, Int. Press, Somerville, MA, [2020] ©2020, pp. 179–212. MR 4363378
- Domenico Marinucci, Maurizia Rossi, and Igor Wigman, The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 1, 374–390 (English, with English and French summaries). MR 4058991, DOI 10.1214/19-AIHP964
- Domenico Marinucci and Giovanni Peccati, Random fields on the sphere, London Mathematical Society Lecture Note Series, vol. 389, Cambridge University Press, Cambridge, 2011. Representation, limit theorems and cosmological applications. MR 2840154, DOI 10.1017/CBO9780511751677
- Domenico Marinucci, Giovanni Peccati, Maurizia Rossi, and Igor Wigman, Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal. 26 (2016), no. 3, 926–960. MR 3540457, DOI 10.1007/s00039-016-0376-5
- Domenico Marinucci, Maurizia Rossi, and Anna Paola Todino, Laguerre expansion for nodal volumes and applications, 2023.
- Domenico Marinucci and Igor Wigman, On the area of excursion sets of spherical Gaussian eigenfunctions, J. Math. Phys. 52 (2011), no. 9, 093301, 21. MR 2867816, DOI 10.1063/1.3624746
- Domenico Marinucci and Igor Wigman, On nonlinear functionals of random spherical eigenfunctions, Comm. Math. Phys. 327 (2014), no. 3, 849–872. MR 3192051, DOI 10.1007/s00220-014-1939-7
- John Mather, Notes on topological stability John Mather, 1970.
- Léo Mathis and Michele Stecconi, Expectation of a random submanifold: the zonoid section, Ann. H. Lebesgue 7 (2024), 903–967 (English, with English and French summaries). MR 4799913
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, NJ, 1963. Based on lecture notes by M. Spivak and R. Wells. MR 163331
- Fedor Nazarov and Mikhail Sodin, On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), no. 5, 1337–1357. MR 2555843, DOI 10.1353/ajm.0.0070
- Liviu Nicolaescu, An invitation to Morse theory, 2nd ed., Universitext, Springer, New York, 2011. MR 2883440, DOI 10.1007/978-1-4614-1105-5
- Massimo Notarnicola, Matrix Hermite polynomials, random determinants and the geometry of Gaussian fields, Ann. H. Lebesgue 6 (2023), 975–1030 (English, with English and French summaries). MR 4678940, DOI 10.5802/ahl.183
- Massimo Notarnicola, Giovanni Peccati, and Anna Vidotto, Functional convergence of Berry’s nodal lengths: approximate tightness and total disorder, J. Stat. Phys. 190 (2023), no. 5, Paper No. 97, 41. MR 4587627, DOI 10.1007/s10955-023-03111-9
- Ivan Nourdin, Giovanni Peccati, and Maurizia Rossi, Nodal statistics of planar random waves, Comm. Math. Phys. 369 (2019), no. 1, 99–151. MR 3959555, DOI 10.1007/s00220-019-03432-5
- Ivan Nourdin and Giovanni Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012. From Stein’s method to universality. MR 2962301, DOI 10.1017/CBO9781139084659
- Ivan Nourdin and Frederi G. Viens, Density formula and concentration inequalities with Malliavin calculus, Electron. J. Probab. 14 (2009), no. 78, 2287–2309. MR 2556018, DOI 10.1214/EJP.v14-707
- David Nualart, Malliavin calculus and its applications, CBMS Regional Conference Series in Mathematics, vol. 110, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2009. MR 2498953, DOI 10.1090/cbms/110
- Ferenc Oravecz, Zeév Rudnick, and Igor Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 299–335 (English, with English and French summaries). MR 2401223, DOI 10.5802/aif.2351
- Giovanni Peccati and Anna Vidotto, Gaussian random measures generated by Berry’s nodal sets, J. Stat. Phys. 178 (2020), no. 4, 996–1027. MR 4064212, DOI 10.1007/s10955-019-02477-z
- Alejandro Rivera, High-dimensional monochromatic random waves approximate the Bargmann-Fock field, Working paper or preprint, August 2021.
- Maurizia Rossi, Random nodal lengths and Wiener chaos, Probabilistic methods in geometry, topology and spectral theory, Contemp. Math., vol. 739, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 155–169. MR 4033918, DOI 10.1090/conm/739/14898
- Yoni Rozenshein, The number of nodal components of arithmetic random waves, Int. Math. Res. Not. IMRN 22 (2017), 6990–7027. MR 3737329, DOI 10.1093/imrn/rnw226
- Zeév Rudnick and Igor Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré 9 (2008), no. 1, 109–130. MR 2389892, DOI 10.1007/s00023-007-0352-6
- Arthur Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883–890. MR 7523, DOI 10.1090/S0002-9904-1942-07811-6
- Michele Stecconi, Kac-Rice formula for transverse intersections, Anal. Math. Phys. 12 (2022), no. 2, Paper No. 44, 64. MR 4386457, DOI 10.1007/s13324-022-00654-0
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3
- Igor Wigman, Fluctuations of the nodal length of random spherical harmonics, Comm. Math. Phys. 298 (2010), no. 3, 787–831. MR 2670928, DOI 10.1007/s00220-010-1078-8
- Igor Wigman, On the nodal structures of random fields: a decade of results, J. Appl. Comput. Topol. 8 (2024), no. 6, 1917–1959. MR 4814523, DOI 10.1007/s41468-023-00140-x
- Shing Tung Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979–1980. MR 645728
- Steve Zelditch, Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 321–342. MR 1500155, DOI 10.1090/conm/484/09482
Bibliographic Information
- Giovanni Peccati
- Affiliation: Department of Mathematics, University of Luxembourg, Luxembourg
- MR Author ID: 683104
- ORCID: 0000-0003-2631-2072
- Michele Stecconi
- Affiliation: Department of Mathematics, University of Luxembourg, Luxembourg
- MR Author ID: 1484393
- ORCID: 0000-0002-8927-5048
- Received by editor(s): May 1, 2024
- Received by editor(s) in revised form: November 4, 2024, and January 15, 2025
- Published electronically: May 1, 2025
- Additional Notes: This research was supported by the Luxembourg National Research Fund (Grant: 021/16236290/HDSA)
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 60G15, 60H07, 60G60, 58K05, 28A75
- DOI: https://doi.org/10.1090/tran/9440