Pinning and dipole asymptotics of locally deformed striped phases
HTML articles powered by AMS MathViewer
- by Arnd Scheel and Qiliang Wu;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9442
- Published electronically: April 4, 2025
- HTML | PDF | Request permission
Abstract:
We investigate the effect of spatial inhomogeneity on perfectly periodic, self-organized striped patterns in spatially extended systems. We demonstrate that inhomogeneities select a specific translate of the striped patterns and induce algebraically decaying, dipole-type farfield deformations. Phase shifts and leading order terms are determined by effective moments of the spatial inhomogeneity. Farfield decay is proportional to the derivatives of the Green’s function of an effective Laplacian. Technically, we use mode filters and conjugacies to an effective Laplacian to establish Fredholm properties of the linearization in Kondratiev spaces. Spatial localization in a contraction argument is gained through the use of an explicit deformation ansatz and a subtle cancellation in Bloch wave space.References
- H. Aharoni, D. V. Todorova, O. Albarrán, L. Goehring, R. D. Kamien, and E. Katifori, The smectic order of wrinkles, Nat. Commun. 8 (2017), 15809.
- S. Akamatsu, S. Bottin-Rousseau, and G. Faivre, Experimental evidence for a zigzag bifurcation in bulk lamellar eutectic growth, Phys. Rev. Lett. 93 (2004), 175701.
- E. Ben-Jacob, I. Cohen, and H. Levine, Cooperative self-organization of microorganisms, Adv. Phys. 49 (2000), no. 4, 395–554.
- Eberhard Bodenschatz, Werner Pesch, and Guenter Ahlers, Recent developments in Rayleigh-Bénard convection, Annual review of fluid mechanics, Vol. 32, Annu. Rev. Fluid Mech., vol. 32, Annual Reviews, Palo Alto, CA, 2000, pp. 709–778. MR 1744317, DOI 10.1146/annurev.fluid.32.1.709
- J. Bricmont, A. Kupiainen, and G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 47 (1994), no. 6, 893–922. MR 1280993, DOI 10.1002/cpa.3160470606
- A. S.-H. Chen and S. W. Morris, On the origin and evolution of icicle ripples, New J. Phys. 15 (2013), no. 10, 103012.
- Pascal Chossat and Gérard Iooss, The Couette-Taylor problem, Applied Mathematical Sciences, vol. 102, Springer-Verlag, New York, 1994. MR 1263654, DOI 10.1007/978-1-4612-4300-7
- Pascal Chossat and Reiner Lauterbach, Methods in equivariant bifurcations and dynamical systems, Advanced Series in Nonlinear Dynamics, vol. 15, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1831950, DOI 10.1142/4062
- A. Chowdhary, M. Haberle, W. Ofori-atta, and Q. Wu, Weak diffusive stability of roll solutions at the zigzag boundary, SIAM J. Math. Anal., to appear.
- M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993), 851–1112.
- M. C. Cross and Alan C. Newell, Convection patterns in large aspect ratio systems, Phys. D 10 (1984), no. 3, 299–328. MR 763474, DOI 10.1016/0167-2789(84)90181-7
- Jonathan H. P. Dawes, After 1952: the later development of Alan Turing’s ideas on the mathematics of pattern formation, Historia Math. 43 (2016), no. 1, 49–64 (English, with English and French summaries). MR 3450591, DOI 10.1016/j.hm.2015.03.003
- Björn de Rijk, Nonlinear stability and asymptotic behavior of periodic wave trains in reaction-diffusion systems against $C_\textrm {ub}$-perturbations, Arch. Ration. Mech. Anal. 248 (2024), no. 3, Paper No. 36, 53. MR 4732292, DOI 10.1007/s00205-024-01980-2
- D. Double, Imperfections in lamellar eutectic crystals, Mater. Sci. Engl. 11 (1973), no. 6, 325–335.
- V. Ehrlacher, C. Ortner, and A. V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations, Arch. Ration. Mech. Anal. 222 (2016), no. 3, 1217–1268. MR 3544326, DOI 10.1007/s00205-016-1019-6
- N. Ercolani, R. Indik, A. C. Newell, and T. Passot, Global description of patterns far from onset: a case study, Phys. D 184 (2003), no. 1-4, 127–140. Complexity and nonlinearity in physical systems (Tucson, AZ, 2001). MR 2030681, DOI 10.1016/S0167-2789(03)00217-3
- R. Friedrich, G. Radons, T. Ditzinger, and A. Henning, Ripple formation through an interface instability from moving growth and erosion sources, Phys. Rev. Lett. 85 (2000), 4884–4887.
- Thierry Gallay and Arnd Scheel, Diffusive stability of oscillations in reaction-diffusion systems, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2571–2598. MR 2763727, DOI 10.1090/S0002-9947-2010-05148-7
- Ryan Goh and Arnd Scheel, Growing patterns, Nonlinearity 36 (2023), no. 10, R1–R51. MR 4646017, DOI 10.1088/1361-6544/acf265
- Julien Guillod, Guido Schneider, Peter Wittwer, and Dominik Zimmermann, Nonlinear stability at the Eckhaus boundary, SIAM J. Math. Anal. 50 (2018), no. 5, 4699–4720. MR 3850300, DOI 10.1137/18M1174751
- G. N. Hile, Fundamental solutions and mapping properties of semielliptic operators, Math. Nachr. 279 (2006), no. 13-14, 1538–1564. MR 2269254, DOI 10.1002/mana.200410436
- G. N. Hile and C. P. Mawata, The behavior of the heat operator on weighted Sobolev spaces, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1407–1428. MR 1467466, DOI 10.1090/S0002-9947-98-02140-0
- John David Jackson, Classical electrodynamics, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1975. MR 436782
- Gabriela Jaramillo and Arnd Scheel, Deformation of striped patterns by inhomogeneities, Math. Methods Appl. Sci. 38 (2015), no. 1, 51–65. MR 3291302, DOI 10.1002/mma.3049
- Gabriela Jaramillo, Arnd Scheel, and Qiliang Wu, The effect of impurities on striped phases, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 1, 131–168. MR 3922810, DOI 10.1017/S0308210518000197
- Mathew A. Johnson and Kevin Zumbrun, Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction-diffusion equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 28 (2011), no. 4, 471–483. MR 2823880, DOI 10.1016/j.anihpc.2011.05.003
- Mathew A. Johnson, Pascal Noble, L. Miguel Rodrigues, and Kevin Zumbrun, Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability, Arch. Ration. Mech. Anal. 207 (2013), no. 2, 693–715. MR 3005327, DOI 10.1007/s00205-012-0573-9
- David J. B. Lloyd and Arnd Scheel, Continuation and bifurcation of grain boundaries in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 16 (2017), no. 1, 252–293. MR 3603778, DOI 10.1137/16M1073212
- S. Longhi and A. Geraci, Swift-Hohenberg equation for optical parametric oscillators, Phys. Rev. A 54 (1996), 4581–4584.
- Mitchell Luskin and Christoph Ortner, Atomistic-to-continuum coupling, Acta Numer. 22 (2013), 397–508. MR 3038699, DOI 10.1017/S0962492913000068
- Robert C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), no. 6, 783–795. MR 539158, DOI 10.1002/cpa.3160320604
- Alexander Mielke, Instability and stability of rolls in the Swift-Hohenberg equation, Comm. Math. Phys. 189 (1997), no. 3, 829–853. MR 1482940, DOI 10.1007/s002200050230
- S. A. Mollick, D. Ghose, P. D. Shipman, and R. Mark Bradley, Anomalous patterns and nearly defect-free ripples produced by bombarding silicon and germanium with a beam of gold ions, Appl. Phys. Lett. 104 (2014), no. 4, 043103.
- David Morrissey and Arnd Scheel, Characterizing the effect of boundary conditions on striped phases, SIAM J. Appl. Dyn. Syst. 14 (2015), no. 3, 1387–1417. MR 3376770, DOI 10.1137/15M1012554
- Matthew F. Pennybacker, Patrick D. Shipman, and Alan C. Newell, Phyllotaxis: some progress, but a story far from over, Phys. D 306 (2015), 48–81. MR 3367573, DOI 10.1016/j.physd.2015.05.003
- L. M. Pismen, Patterns and interfaces in dissipative dynamics, Springer Series in Synergetics, Springer-Verlag, Berlin, 2006. With a foreword by Y. Pomeau. MR 2235817
- Björn Sandstede, Arnd Scheel, Guido Schneider, and Hannes Uecker, Diffusive mixing of periodic wave trains in reaction-diffusion systems, J. Differential Equations 252 (2012), no. 5, 3541–3574. MR 2876664, DOI 10.1016/j.jde.2011.10.014
- Arnd Scheel and Sergey Tikhomirov, Depinning asymptotics in ergodic media, Patterns of dynamics, Springer Proc. Math. Stat., vol. 205, Springer, Cham, 2017, pp. 88–108. MR 3775406, DOI 10.1007/978-3-319-64173-7_{6}
- Arnd Scheel and Jasper Weinburd, Wavenumber selection via spatial parameter jump, Philos. Trans. Roy. Soc. A 376 (2018), no. 2117, 20170191, 20. MR 3789548, DOI 10.1098/rsta.2017.0191
- Arnd Scheel and Qiliang Wu, Small-amplitude grain boundaries of arbitrary angle in the Swift-Hohenberg equation, ZAMM Z. Angew. Math. Mech. 94 (2014), no. 3, 203–232. MR 3179701, DOI 10.1002/zamm.201200172
- Arnd Scheel and Qiliang Wu, Diffusive stability of Turing patterns via normal forms, J. Dynam. Differential Equations 27 (2015), no. 3-4, 1027–1076. MR 3435145, DOI 10.1007/s10884-013-9335-0
- Guido Schneider, Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys. 178 (1996), no. 3, 679–702. MR 1395210, DOI 10.1007/BF02108820
- R. Sheth, L. Marcon, M. F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, and M. A. Ros, Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism, Science 338 (2012), no. 6113, 1476–1480.
- A. Stegner and J. E. Wesfreid, Dynamical evolution of sand ripples under water, Phys. Rev. E 60 (1999), R3487–R3490.
- J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A 15 (1977), 319–328.
- S. Thomas, I. Lagzi, F. Molnár Jr., and Z. Rácz, Probability of the emergence of helical precipitation patterns in the wake of reaction-diffusion fronts, Phys. Rev. Lett. 110 (2013), no. 7, 078303.
- A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B 237 (1952), no. 641, 37–72. MR 3363444, DOI 10.1098/rstb.1952.0012
- Hannes Uecker, Diffusive stability of rolls in the two-dimensional real and complex Swift-Hohenberg equation, Comm. Partial Differential Equations 24 (1999), no. 11-12, 2109–2146. MR 1720762, DOI 10.1080/03605309908821496
- M. Wilczek, W. B. H. Tewes, S. V. Gurevich, M. H. Köpf, L. F. Chi, and U. Thiele, Modelling pattern formation in dip-coating experiments, Math. Model. Nat. Phenom. 10 (2015), no. 4, 44–60. MR 3371911, DOI 10.1051/mmnp/201510402
- Chiqun Zhang, Amit Acharya, Alan C. Newell, and Shankar C. Venkataramani, Computing with non-orientable defects: nematics, smectics and natural patterns, Phys. D 417 (2021), Paper No. 132828, 25. MR 4199832, DOI 10.1016/j.physd.2020.132828
Bibliographic Information
- Arnd Scheel
- Affiliation: School of Mathematics, University of Minnesota, 206 Church St. S.E., Minneapolis, Minnesota 55455
- MR Author ID: 319772
- ORCID: 0000-0001-6667-3003
- Email: scheel@umn.edu
- Qiliang Wu
- Affiliation: Department of Mathematics, Ohio University, Morton Hall 537, 1 Ohio University, Athens, Ohio 45701
- MR Author ID: 1059244
- ORCID: 0000-0002-9201-7525
- Email: wuq@ohio.edu
- Received by editor(s): May 30, 2024
- Published electronically: April 4, 2025
- Additional Notes: The authors acknowledge partial support by the National Science Foundation through grants NSF DMS-2205663 (AS) and NSF DMS-1815079 (QW)
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 35B36
- DOI: https://doi.org/10.1090/tran/9442