Holomorphic functions on complex Banach lattices
HTML articles powered by AMS MathViewer
- by Christopher Boyd, Raymond A. Ryan and Nina Snigireva;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9443
- Published electronically: May 1, 2025
- HTML | PDF | Request permission
Abstract:
We introduce and study the algebraic, analytic and lattice properties of regular homogeneous polynomials and holomorphic functions on complex Banach lattices. We show that the theory of power series with regular terms is closer to the theory of functions of several complex variables than the theory of holomorphic functions on Banach spaces. We extend the concept of the Bohr radius to Banach lattices and show that it provides us with a lower bound for the ratio between the radius of regular convergence and the radius of convergence of a regular holomorphic function. This allows us to show that in finite dimensions the radius of convergence of the Taylor series of a holomorphic function coincides with the radius of convergence of its monomial expansion but that on $\ell _p$ these two radii can be radically different.References
- Lev Aizenberg, Multidimensional analogues of Bohr’s theorem on power series, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1147–1155. MR 1636918, DOI 10.1090/S0002-9939-99-05084-4
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Springer, Dordrecht, 2006. Reprint of the 1985 original. MR 2262133, DOI 10.1007/978-1-4020-5008-4
- Richard M. Aron and Paul D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3–24 (English, with French summary). MR 508947
- Richard M. Aron and Josip Globevnik, Analytic functions on $c_0$, Rev. Mat. Univ. Complut. Madrid 2 (1989), no. suppl., 27–33. Congress on Functional Analysis (Madrid, 1988). MR 1057205
- Frédéric Bayart, Andreas Defant, and Sunke Schlüters, Monomial convergence for holomorphic functions on $\ell _r$, J. Anal. Math. 138 (2019), no. 1, 107–134. MR 3996034, DOI 10.1007/s11854-019-0022-x
- Harold P. Boas, Majorant series, J. Korean Math. Soc. 37 (2000), no. 2, 321–337. Several complex variables (Seoul, 1998). MR 1775963
- Harold P. Boas and Dmitry Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2975–2979. MR 1443371, DOI 10.1090/S0002-9939-97-04270-6
- Jacek Bochnak and Józef Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59–76. MR 313810, DOI 10.4064/sm-39-1-59-76
- Harald Bohr, A Theorem Concerning Power Series, Proc. London Math. Soc. (2) 13 (1914), 1–5. MR 1577494, DOI 10.1112/plms/s2-13.1.1
- Karim Boulabiar and Gerard Buskes, Vector lattice powers: $f$-algebras and functional calculus, Comm. Algebra 34 (2006), no. 4, 1435–1442. MR 2224884, DOI 10.1080/00927870500454885
- Christopher Boyd, Raymond A. Ryan, and Nina Snigireva, Geometry of spaces of orthogonally additive polynomials on $C(K)$, J. Geom. Anal. 30 (2020), no. 4, 4211–4239. MR 4167282, DOI 10.1007/s12220-019-00240-0
- Christopher Boyd, Raymond A. Ryan, and Nina Snigireva, Orthogonally additive sums of powers of linear functionals, Arch. Math. (Basel) 118 (2022), no. 3, 283–290. MR 4390534, DOI 10.1007/s00013-021-01697-8
- Christopher Boyd, Raymond A. Ryan, and Nina Snigireva, A Nakano carrier theorem for polynomials, Proc. Amer. Math. Soc. 151 (2023), no. 4, 1621–1635. MR 4550356, DOI 10.1090/proc/16225
- Qingying Bu and Gerard Buskes, Polynomials on Banach lattices and positive tensor products, J. Math. Anal. Appl. 388 (2012), no. 2, 845–862. MR 2869792, DOI 10.1016/j.jmaa.2011.10.001
- G. Buskes and C. Schwanke, Complex vector lattices via functional completions, J. Math. Anal. Appl. 434 (2016), no. 2, 1762–1778. MR 3415750, DOI 10.1016/j.jmaa.2015.09.080
- Daniel Carando, Silvia Lassalle, and Ignacio Zalduendo, Orthogonally additive polynomials over $C(K)$ are measures—a short proof, Integral Equations Operator Theory 56 (2006), no. 4, 597–602. MR 2284718, DOI 10.1007/s00020-006-1439-z
- Daniel Carando, Silvia Lassalle, and Ignacio Zalduendo, Orthogonally additive holomorphic functions of bounded type over $C(K)$, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 609–618. MR 2720240, DOI 10.1017/S0013091509000248
- Yun Sung Choi, Sung Guen Kim, and Haseo Ki, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl. 228 (1998), no. 2, 467–482. MR 1663577, DOI 10.1006/jmaa.1998.6161
- A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), no. 2, 351–356. MR 947313, DOI 10.1090/S0002-9939-1989-0947313-8
- Andreas Defant and Leonhard Frerick, The Bohr radius of the unit ball of $\ell ^n_p$, J. Reine Angew. Math. 660 (2011), 131–147. MR 2855822, DOI 10.1515/crelle.2011.080
- A. Defant, D. Galicer, M. Mansilla, M. Mastyło, and S. Muro, Projection constants for spaces of Dirichlet polynomials, Math. Ann. 390 (2024), no. 2, 1885–1917. MR 4801821, DOI 10.1007/s00208-023-02781-w
- Andreas Defant, Domingo García, and Manuel Maestre, Bohr’s power series theorem and local Banach space theory, J. Reine Angew. Math. 557 (2003), 173–197. MR 1978407, DOI 10.1515/crll.2003.030
- Seán Dineen, Complex analysis in locally convex spaces, Notas de Matemática. [Mathematical Notes], North-Holland Publishing Co., Amsterdam-New York, 1981. North-Holland Mathematics Studies, 57. MR 640093
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- Seán Dineen and Richard M. Timoney, Absolute bases, tensor products and a theorem of Bohr, Studia Math. 94 (1989), no. 3, 227–234. MR 1019790, DOI 10.4064/sm-94-3-227-234
- D. H. Fremlin, Tensor products of Archimedean vector lattices, Amer. J. Math. 94 (1972), 777–798. MR 312203, DOI 10.2307/2373758
- Bogdan C. Grecu and Raymond A. Ryan, Polynomials on Banach spaces with unconditional bases, Proc. Amer. Math. Soc. 133 (2005), no. 4, 1083–1091. MR 2117209, DOI 10.1090/S0002-9939-04-07738-X
- W. K. Hayman, Power series expansions for harmonic functions, Bull. London Math. Soc. 2 (1970), 152–158. MR 267114, DOI 10.1112/blms/2.2.152
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Jesús Ángel Jaramillo, Ángeles Prieto, and Ignacio Zalduendo, Orthogonally additive holomorphic functions on open subsets of $C(K)$, Rev. Mat. Complut. 25 (2012), no. 1, 31–41. MR 2876915, DOI 10.1007/s13163-010-0055-2
- A. G. Kusraev, Hölder type inequalities for orthosymmetric bilinear operators, Vladikavkaz. Mat. Zh. 9 (2007), no. 3, 36–46. MR 2453480
- A. G. Kusraev, Functional calculus and Minkowski duality on vector lattices, Vladikavkaz. Mat. Zh. 11 (2009), no. 2, front matter, 31–42 (English, with English and Russian summaries). MR 2529407
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- Mário C. Matos, On holomorphy in Banach spaces and absolute convergence of Fourier series, Portugal. Math. 45 (1988), no. 4, 429–450. MR 982911
- Mário C. Matos and Leopoldo Nachbin, Reinhardt domains of holomorphy in Banach spaces, Adv. Math. 92 (1992), no. 2, 266–278. MR 1155467, DOI 10.1016/0001-8708(92)90066-T
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- Günter Mittelmeyer and Manfred Wolff, Über den Absolutbetrag auf komplexen Vektorverbänden, Math. Z. 137 (1974), 87–92 (German). MR 348441, DOI 10.1007/BF01213937
- Gustavo A. Muñoz, Yannis Sarantopoulos, and Andrew Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math. 134 (1999), no. 1, 1–33. MR 1688213, DOI 10.4064/sm-134-1-1-33
- Antonio M. Peralta and Daniele Puglisi, Orthogonally additive holomorphic functions on $\rm C^*$-algebras, Oper. Matrices 6 (2012), no. 3, 621–629. MR 2987032, DOI 10.7153/oam-06-43
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 210528
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 423039
Bibliographic Information
- Christopher Boyd
- Affiliation: School of Mathematics & Statistics, University College Dublin, Belfield, Dublin 4, Ireland
- MR Author ID: 343443
- Email: christopher.boyd@ucd.ie
- Raymond A. Ryan
- Affiliation: School of Mathematical and Statistical Sciences, University of Galway, Ireland
- MR Author ID: 242506
- Email: ray.ryan@universityofgalway.ie
- Nina Snigireva
- Affiliation: School of Mathematical and Statistical Sciences, University of Galway, Ireland
- MR Author ID: 803132
- ORCID: 0000-0002-6372-2268
- Email: nina.snigireva@universityofgalway.ie
- Received by editor(s): June 27, 2024
- Received by editor(s) in revised form: December 23, 2024
- Published electronically: May 1, 2025
- Dedicated: Dedicated to Seán Dineen (1944–2024), teacher, mentor and friend.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 46G20, 46B42, 32A70; Secondary 46E10, 32A05
- DOI: https://doi.org/10.1090/tran/9443