Weak uniqueness by noise for singular stochastic PDEs
HTML articles powered by AMS MathViewer
- by Federico Bertacco, Carlo Orrieri and Luca Scarpa;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9448
- Published electronically: April 25, 2025
- HTML | PDF | Request permission
Abstract:
We prove weak uniqueness of mild solutions for general classes of SPDEs on a Hilbert space. The main novelty is that the drift is only defined on a Sobolev-type subspace and no Hölder-continuity assumptions are required. This framework turns out to be effective to achieve novel uniqueness results for several specific examples. Such wide range of applications is obtained by exploiting either coloured or rougher-than-cylindrical noises.References
- D. Addona and D. A. Bignamini, Pathwise uniqueness for stochastic heat and damped equations with Hölder continuous drift, arXiv:2308.05415, 2023.
- Davide Addona, Federica Masiero, and Enrico Priola, A BSDEs approach to pathwise uniqueness for stochastic evolution equations, J. Differential Equations 366 (2023), 192–248. MR 4582084, DOI 10.1016/j.jde.2023.04.014
- Antonio Agresti and Mark Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces part I. Stochastic maximal regularity and local existence, Nonlinearity 35 (2022), no. 8, 4100–4210. MR 4459102, DOI 10.1088/1361-6544/abd613
- Siva R. Athreya, Richard F. Bass, Maria Gordina, and Edwin A. Perkins, Infinite dimensional stochastic differential equations of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 116 (2006), no. 3, 381–406. MR 2199555, DOI 10.1016/j.spa.2005.10.001
- M. Bagnara, M. Maurelli, and F. Xu, No blow-up by nonlinear Itô noise for the Euler equations, arXiv:2305.09852, 2023.
- Florian Bechtold and Jörn Wichmann, A pathwise regularization by noise phenomenon for the evolutionary $p$-Laplace equation, J. Evol. Equ. 23 (2023), no. 4, Paper No. 76, 27. MR 4665782, DOI 10.1007/s00028-023-00926-7
- G. Da Prato, A new regularity result for Ornstein-Uhlenbeck generators and applications, J. Evol. Equ. 3 (2003), no. 3, 485–498. Dedicated to Philippe Bénilan. MR 2019031, DOI 10.1007/s00028-003-0114-x
- G. Da Prato and F. Flandoli, Pathwise uniqueness for a class of SDE in Hilbert spaces and applications, J. Funct. Anal. 259 (2010), no. 1, 243–267. MR 2610386, DOI 10.1016/j.jfa.2009.11.019
- G. Da Prato, F. Flandoli, E. Priola, and M. Röckner, Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift, Ann. Probab. 41 (2013), no. 5, 3306–3344. MR 3127884, DOI 10.1214/12-AOP763
- G. Da Prato, F. Flandoli, E. Priola, and M. Röckner, Strong uniqueness for stochastic evolution equations with unbounded measurable drift term, J. Theoret. Probab. 28 (2015), no. 4, 1571–1600. MR 3422943, DOI 10.1007/s10959-014-0545-0
- Giuseppe Da Prato and Jerzy Zabczyk, Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series, vol. 293, Cambridge University Press, Cambridge, 2002. MR 1985790, DOI 10.1017/CBO9780511543210
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 152, Cambridge University Press, Cambridge, 2014. MR 3236753, DOI 10.1017/CBO9781107295513
- E. Fedrizzi and F. Flandoli, Pathwise uniqueness and continuous dependence of SDEs with non-regular drift, Stochastics 83 (2011), no. 3, 241–257. MR 2810591, DOI 10.1080/17442508.2011.553681
- F. Flandoli, M. Gubinelli, and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math. 180 (2010), no. 1, 1–53. MR 2593276, DOI 10.1007/s00222-009-0224-4
- Franco Flandoli and Dejun Luo, High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations, Probab. Theory Related Fields 180 (2021), no. 1-2, 309–363. MR 4265023, DOI 10.1007/s00440-021-01037-5
- Paul Gassiat and Benjamin Gess, Regularization by noise for stochastic Hamilton-Jacobi equations, Probab. Theory Related Fields 173 (2019), no. 3-4, 1063–1098. MR 3936151, DOI 10.1007/s00440-018-0848-7
- L. Galeati and D. Luo, Weak well-posedness by transport noise for a class of 2D fluid dynamics equations, arXiv:2305.08761, 2023.
- Benjamin Gess and Mario Maurelli, Well-posedness by noise for scalar conservation laws, Comm. Partial Differential Equations 43 (2018), no. 12, 1702–1736. MR 3927370, DOI 10.1080/03605302.2018.1535604
- Massimiliano Gubinelli and Nicolas Perkowski, The infinitesimal generator of the stochastic Burgers equation, Probab. Theory Related Fields 178 (2020), no. 3-4, 1067–1124. MR 4168394, DOI 10.1007/s00440-020-00996-5
- István Gyöngy and É. Pardoux, On the regularization effect of space-time white noise on quasi-linear parabolic partial differential equations, Probab. Theory Related Fields 97 (1993), no. 1-2, 211–229. MR 1240724, DOI 10.1007/BF01199321
- Benjamin Gess and Panagiotis E. Souganidis, Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws, Comm. Pure Appl. Math. 70 (2017), no. 8, 1562–1597. MR 3666564, DOI 10.1002/cpa.21646
- István Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equations, Stochastic Process. Appl. 73 (1998), no. 2, 271–299. MR 1608641, DOI 10.1016/S0304-4149(97)00103-8
- Kiyoshi Itô, The topological support of Gauss measure on Hilbert space, Nagoya Math. J. 38 (1970), 181–183. MR 261332
- N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), no. 2, 154–196. MR 2117951, DOI 10.1007/s00440-004-0361-z
- Wei Liu and Michael Röckner, Stochastic partial differential equations: an introduction, Universitext, Springer, Cham, 2015. MR 3410409, DOI 10.1007/978-3-319-22354-4
- Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1995. [2013 reprint of the 1995 original] [MR1329547]. MR 3012216
- Carlo Marinelli and Luca Scarpa, Fréchet differentiability of mild solutions to SPDEs with respect to the initial datum, J. Evol. Equ. 20 (2020), no. 3, 1093–1130. MR 4142247, DOI 10.1007/s00028-019-00546-0
- Mario Maurelli, Non-explosion by Stratonovich noise for ODEs, Electron. Commun. Probab. 25 (2020), Paper No. 68, 10. MR 4158228, DOI 10.1214/20-ECP347
- Federica Masiero and Enrico Priola, Well-posedness of semilinear stochastic wave equations with Hölder continuous coefficients, J. Differential Equations 263 (2017), no. 3, 1773–1812. MR 3634696, DOI 10.1016/j.jde.2017.03.031
- Enrico Priola, On weak uniqueness for some degenerate SDEs by global $L^p$ estimates, Potential Anal. 42 (2015), no. 1, 247–281. MR 3297995, DOI 10.1007/s11118-014-9432-7
- Enrico Priola, An optimal regularity result for Kolmogorov equations and weak uniqueness for some critical SPDEs, Ann. Probab. 49 (2021), no. 3, 1310–1346. MR 4255146, DOI 10.1214/20-aop1482
- E. Priola, Correction to “an optimal regularity result for kolmogorov equations and weak uniqueness for some critical spdes”, arXiv:2210.07096, 2022.
- A. Ju. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 434–452, 480 (Russian). MR 568986
- Jan van Neerven, Mark Veraar, and Lutz Weis, Maximal $L^p$-regularity for stochastic evolution equations, SIAM J. Math. Anal. 44 (2012), no. 3, 1372–1414. MR 2982717, DOI 10.1137/110832525
- Lorenzo Zambotti, An analytic approach to existence and uniqueness for martingale problems in infinite dimensions, Probab. Theory Related Fields 118 (2000), no. 2, 147–168. MR 1790079, DOI 10.1007/s440-000-8012-6
Bibliographic Information
- Federico Bertacco
- Affiliation: Imperial College London, United Kingdom
- MR Author ID: 1401151
- ORCID: 0000-0002-6363-1294
- Email: f.bertacco20@imperial.ac.uk
- Carlo Orrieri
- Affiliation: Università di Pavia, Italy
- MR Author ID: 1124715
- Email: carlo.orrieri@unipv.it
- Luca Scarpa
- Affiliation: Politecnico di Milano, Italy
- MR Author ID: 1123178
- ORCID: 0000-0001-6928-8944
- Email: luca.scarpa@polimi.it
- Received by editor(s): June 19, 2024
- Received by editor(s) in revised form: January 7, 2025, and February 19, 2025
- Published electronically: April 25, 2025
- Additional Notes: The first author was financially supported by to the Royal Society through Prof. M. Hairer’s research professorship grant RP\textbackslash R1\textbackslash191065. The second and third authors were financially supported through the project CUP_E55F22000270001.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 60H15, 35R60, 35R15
- DOI: https://doi.org/10.1090/tran/9448