Structure of Virasoro tensor categories at central charge $13-6p-6p^{-1}$ for integers $p > 1$
HTML articles powered by AMS MathViewer
- by Robert McRae and Jinwei Yang;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9449
- Published electronically: May 1, 2025
- HTML | PDF | Request permission
Abstract:
Let $\mathcal {O}_c$ be the category of finite-length central-charge-$c$ modules for the Virasoro Lie algebra whose composition factors are irreducible quotients of reducible Verma modules. Recently, it has been shown that $\mathcal {O}_c$ admits vertex algebraic tensor category structure for any $c\in \mathbb {C}$. Here, we determine the structure of this tensor category when $c=13-6p-6p^{-1}$ for an integer $p>1$. For such $c$, we prove that $\mathcal {O}_{c}$ is rigid, and we construct projective covers of irreducible modules in a natural tensor subcategory $\mathcal {O}_{c}^0$. We then compute all tensor products involving irreducible modules and their projective covers. Using these tensor product formulas, we show that $\mathcal {O}_c$ has a semisimplification which, as an abelian category, is the Deligne product of two tensor subcategories that are tensor equivalent to the Kazhdan-Lusztig categories for affine $\mathfrak {sl}_2$ at levels $-2+p^{\pm 1}$. Next, as a straightforward consequence of the braided tensor category structure on $\mathcal {O}_c$ together with the theory of vertex operator algebra extensions, we rederive known results for triplet vertex operator algebras $\mathcal {W}(p)$, including rigidity, fusion rules, and construction of projective covers. Finally, we prove a recent conjecture of Negron that $\mathcal {O}_c^0$ is braided tensor equivalent to the $PSL(2,\mathbb {C})$-equivariantization of the category of $\mathcal {W}(p)$-modules.References
- Dražen Adamović, Classification of irreducible modules of certain subalgebras of free boson vertex algebra, J. Algebra 270 (2003), no. 1, 115–132. MR 2016652, DOI 10.1016/j.jalgebra.2003.07.011
- Dražen Adamović, Thomas Creutzig, Naoki Genra, and Jinwei Yang, The vertex algebras $\mathcal R^{(p)}$ and $\mathcal V^{(p)}$, Comm. Math. Phys. 383 (2021), no. 2, 1207–1241. MR 4239841, DOI 10.1007/s00220-021-03950-1
- Dražen Adamović, Xianzu Lin, and Antun Milas, ADE subalgebras of the triplet vertex algebra $\scr W(p)$: $A$-series, Commun. Contemp. Math. 15 (2013), no. 6, 1350028, 30. MR 3139409, DOI 10.1142/S0219199713500284
- Dražen Adamović and Antun Milas, Logarithmic intertwining operators and $\scr W(2,2p-1)$ algebras, J. Math. Phys. 48 (2007), no. 7, 073503, 20. MR 2337684, DOI 10.1063/1.2747725
- Dražen Adamović and Antun Milas, On the triplet vertex algebra $\scr W(p)$, Adv. Math. 217 (2008), no. 6, 2664–2699. MR 2397463, DOI 10.1016/j.aim.2007.11.012
- Dražen Adamović and Antun Milas, Lattice construction of logarithmic modules for certain vertex algebras, Selecta Math. (N.S.) 15 (2009), no. 4, 535–561. MR 2565050, DOI 10.1007/s00029-009-0009-z
- Dražen Adamović and Antun Milas, The doublet vertex operator superalgebras $\scr A(p)$ and $\scr A_{2,p}$, Recent developments in algebraic and combinatorial aspects of representation theory, Contemp. Math., vol. 602, Amer. Math. Soc., Providence, RI, 2013, pp. 23–38. MR 3203897, DOI 10.1090/conm/602/12028
- Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no. 3, 563–588. MR 1328736
- Jean Auger, Thomas Creutzig, Shashank Kanade, and Matthew Rupert, Braided tensor categories related to $\mathcal {B}_p$ vertex algebras, Comm. Math. Phys. 378 (2020), no. 1, 219–260. MR 4124986, DOI 10.1007/s00220-020-03747-8
- Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619, DOI 10.1090/ulect/021
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR 757857, DOI 10.1016/0550-3213(84)90052-X
- P. V. Bushlanov, B. L. Feigin, A. M. Gainutdinov, and I. Yu. Tipunin, Lusztig limit of quantum $\textrm {sl}(2)$ at root of unity and fusion of $(1,p)$ Virasoro logarithmic minimal models, Nuclear Phys. B 818 (2009), no. 3, 179–195. MR 2518084, DOI 10.1016/j.nuclphysb.2009.03.016
- P. V. Bushlanov, A. M. Gainutdinov, and I. Yu. Tipunin, Kazhdan-Lusztig equivalence and fusion of Kac modules in Virasoro logarithmic models, Nuclear Phys. B 862 (2012), no. 1, 232–269. MR 2927838, DOI 10.1016/j.nuclphysb.2012.04.018
- Nils Carqueville and Michael Flohr, Nonmeromorphic operator product expansion and $C_2$-cofiniteness for a family of $\scr W$-algebras, J. Phys. A 39 (2006), no. 4, 951–966. MR 2201547, DOI 10.1088/0305-4470/39/4/015
- Thomas Creutzig, Azat M. Gainutdinov, and Ingo Runkel, A quasi-Hopf algebra for the triplet vertex operator algebra, Commun. Contemp. Math. 22 (2020), no. 3, 1950024, 71. MR 4082225, DOI 10.1142/S021919971950024X
- Thomas Creutzig, Cuipo Jiang, Florencia Orosz Hunziker, David Ridout, and Jinwei Yang, Tensor categories arising from the Virasoro algebra, Adv. Math. 380 (2021), Paper No. 107601, 35. MR 4205114, DOI 10.1016/j.aim.2021.107601
- T. Creutzig, S. Kanade, A. R. Linshaw, and D. Ridout, Schur-Weyl duality for Heisenberg cosets, Transform. Groups 24 (2019), no. 2, 301–354. MR 3948937, DOI 10.1007/s00031-018-9497-2
- Thomas Creutzig, Shashank Kanade, and Robert McRae, Tensor categories for vertex operator superalgebra extensions, Mem. Amer. Math. Soc. 295 (2024), no. 1472, vi+181. MR 4720880, DOI 10.1090/memo/1472
- Thomas Creutzig, Robert McRae, and Jinwei Yang, Direct limit completions of vertex tensor categories, Commun. Contemp. Math. 24 (2022), no. 2, Paper No. 2150033, 60. MR 4380115, DOI 10.1142/S0219199721500334
- Thomas Creutzig, Robert McRae, and Jinwei Yang, On ribbon categories for singlet vertex algebras, Comm. Math. Phys. 387 (2021), no. 2, 865–925. MR 4315663, DOI 10.1007/s00220-021-04097-9
- Thomas Creutzig, Robert McRae, and Jinwei Yang, Tensor structure on the Kazhdan-Lusztig category for affine $\mathfrak {gl}(1|1)$, Int. Math. Res. Not. IMRN 16 (2022), 12462–12515. MR 4466006, DOI 10.1093/imrn/rnab080
- Thomas Creutzig, Antun Milas, and Matt Rupert, Logarithmic link invariants of $\overline U_q^H(\mathfrak {sl}_2)$ and asymptotic dimensions of singlet vertex algebras, J. Pure Appl. Algebra 222 (2018), no. 10, 3224–3247. MR 3795642, DOI 10.1016/j.jpaa.2017.12.004
- Thomas Creutzig, David Ridout, and Simon Wood, Coset constructions of logarithmic $(1, p)$ models, Lett. Math. Phys. 104 (2014), no. 5, 553–583. MR 3197005, DOI 10.1007/s11005-014-0680-7
- NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15.
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015. MR 3242743, DOI 10.1090/surv/205
- Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel′fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197–215. MR 1187549, DOI 10.1142/s0217751x92003781
- B. L. Feĭgin and D. B. Fuchs, Representations of the Virasoro algebra, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., vol. 7, Gordon and Breach, New York, 1990, pp. 465–554. MR 1104280
- B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Comm. Math. Phys. 265 (2006), no. 1, 47–93. MR 2217297, DOI 10.1007/s00220-006-1551-6
- B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, Logarithmic extensions of minimal models: characters and modular transformations, Nuclear Phys. B 757 (2006), no. 3, 303–343. MR 2275182, DOI 10.1016/j.nuclphysb.2006.09.019
- M. Finkelberg, An equivalence of fusion categories, Geom. Funct. Anal. 6 (1996), no. 2, 249–267. MR 1384612, DOI 10.1007/BF02247887
- Philippe Di Francesco, Pierre Mathieu, and David Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. MR 1424041, DOI 10.1007/978-1-4612-2256-9
- Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR 2082709, DOI 10.1090/surv/088
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123–168. MR 1159433, DOI 10.1215/S0012-7094-92-06604-X
- Igor Frenkel and Minxian Zhu, Vertex algebras associated to modified regular representations of the Virasoro algebra, Adv. Math. 229 (2012), no. 6, 3468–3507. MR 2900445, DOI 10.1016/j.aim.2012.02.008
- J. Fuchs, S. Hwang, A. M. Semikhatov, and I. Yu. Tipunin, Nonsemisimple fusion algebras and the Verlinde formula, Comm. Math. Phys. 247 (2004), no. 3, 713–742. MR 2062649, DOI 10.1007/s00220-004-1058-y
- Matthias R. Gaberdiel and Horst G. Kausch, Indecomposable fusion products, Nuclear Phys. B 477 (1996), no. 1, 293–318. MR 1413262, DOI 10.1016/0550-3213(96)00364-1
- Matthias R. Gaberdiel and Ingo Runkel, From boundary to bulk in logarithmic CFT, J. Phys. A 41 (2008), no. 7, 075402, 29. MR 2434147, DOI 10.1088/1751-8113/41/7/075402
- T. Gannon and C. Negron, Quantum $SL(2)$ and logarithmic vertex operator algebras at $(p, 1)$-central charge, J. Eur. Math. Soc. (JEMS) (2024), \PrintDOI{10.4171/JEMS/1489}.
- Maria Gorelik and Victor Kac, On complete reducibility for infinite-dimensional Lie algebras, Adv. Math. 226 (2011), no. 2, 1911–1972. MR 2737804, DOI 10.1016/j.aim.2010.09.001
- Yi-Zhi Huang, Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory, J. Algebra 182 (1996), no. 1, 201–234. MR 1388864, DOI 10.1006/jabr.1996.0168
- Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 871–911. MR 2468370, DOI 10.1142/S0219199708003083
- Yi-Zhi Huang, Cofiniteness conditions, projective covers and the logarithmic tensor product theory, J. Pure Appl. Algebra 213 (2009), no. 4, 458–475. MR 2483831, DOI 10.1016/j.jpaa.2008.07.016
- Yi-Zhi Huang, Alexander Kirillov Jr., and James Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), no. 3, 1143–1159. MR 3339173, DOI 10.1007/s00220-015-2292-1
- Yi-Zhi Huang, James Lepowsky, and Lin Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: introduction and strongly graded algebras and their generalized modules, Conformal field theories and tensor categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, pp. 169–248. MR 3585368
- Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, II: Logarithmic formal calculus and properties of logarithmic intertwining operators, arXiv:1012.4196.
- Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, III: Intertwining maps and tensor product bifunctors, arXiv:1012.4197.
- Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, IV: Constructions of tensor product bifunctors and the compatibility conditions, arXiv:1012.4198.
- Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, V: Convergence condition for intertwining maps and the corresponding compatibility condition, arXiv:1012.4199.
- Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VI: Expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms, arXiv:1012.4202.
- Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VII: Convergence and extension properties and applications to expansion for intertwining maps, arXiv:1110.1929.
- Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra, arXiv:1110.1931.
- Yi-Zhi Huang and Jinwei Yang, Logarithmic intertwining operators and associative algebras, J. Pure Appl. Algebra 216 (2012), no. 6, 1467–1492. MR 2890516, DOI 10.1016/j.jpaa.2011.12.006
- Kenji Iohara and Yoshiyuki Koga, Representation theory of the Virasoro algebra, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2011. MR 2744610, DOI 10.1007/978-0-85729-160-8
- Shashank Kanade and David Ridout, NGK and HLZ: fusion for physicists and mathematicians, Affine, vertex and W-algebras, Springer INdAM Ser., vol. 37, Springer, Cham, [2019] ©2019, pp. 135–181. MR 4290628, DOI 10.1007/978-3-030-32906-8_{7}
- Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. MR 2182076, DOI 10.1007/3-540-27950-4
- H. G. Kausch, Extended conformal algebras generated by a multiplet of primary fields, Phys. Lett. B 259 (1991), no. 4, 448–455. MR 1107489, DOI 10.1016/0370-2693(91)91655-F
- David Kazhdan and Hans Wenzl, Reconstructing monoidal categories, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 111–136. MR 1237835
- Alexander Kirillov Jr. and Viktor Ostrik, On a $q$-analogue of the McKay correspondence and the ADE classification of $\mathfrak {sl}_2$ conformal field theories, Adv. Math. 171 (2002), no. 2, 183–227. MR 1936496, DOI 10.1006/aima.2002.2072
- Kalle Kytölä and David Ridout, On staggered indecomposable Virasoro modules, J. Math. Phys. 50 (2009), no. 12, 123503, 51. MR 2582599, DOI 10.1063/1.3191682
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- Haisheng Li, Determining fusion rules by $A(V)$-modules and bimodules, J. Algebra 212 (1999), no. 2, 515–556. MR 1676853, DOI 10.1006/jabr.1998.7655
- Xianzu Lin, Fusion rules of Virasoro vertex operator algebras, Proc. Amer. Math. Soc. 143 (2015), no. 9, 3765–3776. MR 3359568, DOI 10.1090/proc/12552
- Robert McRae, On the tensor structure of modules for compact orbifold vertex operator algebras, Math. Z. 296 (2020), no. 1-2, 409–452. MR 4140748, DOI 10.1007/s00209-019-02445-z
- Robert McRae, Twisted modules and $G$-equivariantization in logarithmic conformal field theory, Comm. Math. Phys. 383 (2021), no. 3, 1939–2019. MR 4244264, DOI 10.1007/s00220-020-03882-2
- Antun Milas, Fusion rings for degenerate minimal models, J. Algebra 254 (2002), no. 2, 300–335. MR 1933872, DOI 10.1016/S0021-8693(02)00096-0
- Masahiko Miyamoto, $C_1$-cofiniteness and fusion products for vertex operator algebras, Conformal field theories and tensor categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, pp. 271–279. MR 3585370
- Alexi Morin-Duchesne, Jørgen Rasmussen, and David Ridout, Boundary algebras and Kac modules for logarithmic minimal models, Nuclear Phys. B 899 (2015), 677–769. MR 3398936, DOI 10.1016/j.nuclphysb.2015.08.017
- Kiyokazu Nagatomo and Akihiro Tsuchiya, The triplet vertex operator algebra $W(p)$ and the restricted quantum group $\overline U_q(sl_2)$ at $q=e^{\frac {\pi i}{p}}$, Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., vol. 61, Math. Soc. Japan, Tokyo, 2011, pp. 1–49. MR 2867143, DOI 10.2969/aspm/06110001
- Werner Nahm, Quasi-rational fusion products, Internat. J. Modern Phys. B 8 (1994), no. 25-26, 3693–3702. Perspectives on solvable models. MR 1305167, DOI 10.1142/S0217979294001597
- Cris Negron, Log-modular quantum groups at even roots of unity and the quantum Frobenius I, Comm. Math. Phys. 382 (2021), no. 2, 773–814. MR 4227163, DOI 10.1007/s00220-021-04012-2
- Florencia Orosz Hunziker, Fusion rules for the Virasoro algebra of central charge 25, Algebr. Represent. Theory 23 (2020), no. 5, 2013–2031. MR 4140063, DOI 10.1007/s10468-019-09923-2
- Paul A. Pearce, Jørgen Rasmussen, and Jean-Bernard Zuber, Logarithmic minimal models, J. Stat. Mech. Theory Exp. 11 (2006), P11017, 36. MR 2280249, DOI 10.1088/1742-5468/2006/11/p11017
- Jørgen Rasmussen, Classification of Kac representations in the logarithmic minimal models $\scr {LM}(1,p)$, Nuclear Phys. B 853 (2011), no. 2, 404–435. MR 2835511, DOI 10.1016/j.nuclphysb.2011.07.026
- Jørgen Rasmussen and Paul A. Pearce, Fusion algebras of logarithmic minimal models, J. Phys. A 40 (2007), no. 45, 13711–13733. MR 2387313, DOI 10.1088/1751-8113/40/45/013
- N. Read and Hubert Saleur, Associative-algebraic approach to logarithmic conformal field theories, Nuclear Phys. B 777 (2007), no. 3, 316–351. MR 2341025, DOI 10.1016/j.nuclphysb.2007.03.033
- C. S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 85 (1967), 303–336. MR 233371, DOI 10.2307/1970444
- Akihiro Tsuchiya and Simon Wood, The tensor structure on the representation category of the $\scr W_p$ triplet algebra, J. Phys. A 46 (2013), no. 44, 445203, 40. MR 3120909, DOI 10.1088/1751-8113/46/44/445203
- Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993), 197–211. MR 1230296, DOI 10.1155/S1073792893000212
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Bibliographic Information
- Robert McRae
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
- MR Author ID: 899058
- Email: rhmcrae@tsinghua.edu.cn
- Jinwei Yang
- Affiliation: School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- MR Author ID: 970734
- Email: jinwei2@sjtu.edu.cn
- Received by editor(s): November 10, 2020
- Received by editor(s) in revised form: March 6, 2024, and February 10, 2025
- Published electronically: May 1, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 17B68, 17B69, 18M15, 81R10
- DOI: https://doi.org/10.1090/tran/9449