Diederich–Fornæss index and global regularity in the $\overline {\partial }$–Neumann problem: domains with comparable Levi eigenvalues
HTML articles powered by AMS MathViewer
- by Bingyuan Liu and Emil J. Straube;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9451
- Published electronically: May 1, 2025
- HTML | PDF | Request permission
Abstract:
Let $\Omega$ be a smooth bounded pseudoconvex domain in $\mathbb {C}^{n}$. Let $1\leq q_{0}\leq (n-1)$. We show that if $q_{0}$–sums of eigenvalues of the Levi form are comparable, then if the Diederich–Fornæss index of $\Omega$ is $1$, the $\overline {\partial }$–Neumann operators $N_{q}$ and the Bergman projections $P_{q-1}$ are regular in Sobolev norms for $q_{0}\leq q\leq n$. In particular, for domains in $\mathbb {C}^{2}$, Diederich–Fornæss index $1$ implies global regularity in the $\overline {\partial }$–Neumann problem.References
- Muhenned Abdulsahib and Phillip S. Harrington, Hartogs domains and the Diederich-Fornæss index, Illinois J. Math. 63 (2019), no. 4, 485–511. MR 4032812, DOI 10.1215/00192082-7937302
- David E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math. 168 (1992), no. 1-2, 1–10. MR 1149863, DOI 10.1007/BF02392975
- Mechthild Behrens, Plurisubharmonic defining functions of weakly pseudoconvex domains in $\textbf {C}^2$, Math. Ann. 270 (1985), no. 2, 285–296. MR 771984, DOI 10.1007/BF01456187
- Steven R. Bell, Biholomorphic mappings and the $\bar \partial$-problem, Ann. of Math. (2) 114 (1981), no. 1, 103–113. MR 625347, DOI 10.2307/1971379
- Benoît Ben Moussa, Analyticité semi-globale pour le $\overline \partial$-Neumann dans des domaines pseudoconvexes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 1, 51–100 (French, with English summary). MR 1765538
- Bo Berndtsson and Philippe Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1–10. MR 1785069, DOI 10.1007/s002090000099
- Harold P. Boas and Emil J. Straube, Complete Hartogs domains in $\mathbf C^2$ have regular Bergman and Szegő projections, Math. Z. 201 (1989), no. 3, 441–454. MR 999739, DOI 10.1007/BF01214907
- Harold P. Boas and Emil J. Straube, Equivalence of regularity for the Bergman projection and the $\overline \partial$-Neumann operator, Manuscripta Math. 67 (1990), no. 1, 25–33. MR 1037994, DOI 10.1007/BF02568420
- Harold P. Boas and Emil J. Straube, Sobolev estimates for the $\overline \partial$-Neumann operator on domains in $\textbf {C}^n$ admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), no. 1, 81–88. MR 1086815, DOI 10.1007/BF02571327
- Harold P. Boas and Emil J. Straube, de Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the $\overline \partial$-Neumann problem, J. Geom. Anal. 3 (1993), no. 3, 225–235. MR 1225296, DOI 10.1007/BF02921391
- David W. Catlin, Global regularity of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39–49. MR 740870, DOI 10.1090/pspum/041/740870
- Mehmet Çelik, Sönmez Şahutoğlu, and Emil J. Straube, Convex domains, Hankel operators, and maximal estimates, Proc. Amer. Math. Soc. 148 (2020), no. 2, 751–764. MR 4052212, DOI 10.1090/proc/14729
- So-Chin Chen and Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. MR 1800297, DOI 10.1090/amsip/019
- Michael Christ, Global $C^\infty$ irregularity of the $\overline \partial$-Neumann problem for worm domains, J. Amer. Math. Soc. 9 (1996), no. 4, 1171–1185. MR 1370592, DOI 10.1090/S0894-0347-96-00213-5
- Gian Maria Dall’Ara and Samuele Mongodi, The core of the Levi distribution, J. Éc. polytech. Math. 10 (2023), 1047–1095 (English, with English and French summaries). MR 4600400, DOI 10.5802/jep.239
- John P. D’Angelo, Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993. MR 1224231
- M. Derridj, Regularité pour $\bar \partial$ dans quelques domaines faiblement pseudo-convexes, J. Differential Geometry 13 (1978), no. 4, 559–576 (1979) (French). MR 570218, DOI 10.4310/jdg/1214434708
- Maklouf Derridj and David S. Tartakoff, On the global real analyticity of solutions to the $\overline \partial$-Neumann problem, Comm. Partial Differential Equations 1 (1976), no. 5, 401–435. MR 413193, DOI 10.1080/03605307608820016
- Klas Diederich and John Erik Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129–141. MR 437806, DOI 10.1007/BF01390105
- John Erik Fornæss, Plurisubharmonic defining functions, Pacific J. Math. 80 (1979), no. 2, 381–388. MR 539424, DOI 10.2140/pjm.1979.80.381
- J. E. Fornæss and A.-K. Herbig, A note on plurisubharmonic defining functions in $\Bbb C^n$, Math. Ann. 342 (2008), no. 4, 749–772. MR 2443762, DOI 10.1007/s00208-008-0255-y
- Anne–Katrin Gallagher and Tobias Harz, On plurisubharmonic defining functions for pseudoconvex domains in $\mathbb {C}^{2}$, Preprint, arXiv:2204.13270, 2022.
- Phillip S. Harrington, Global regularity for the $\overline \partial$-Neumann operator and bounded plurisubharmonic exhaustion functions, Adv. Math. 228 (2011), no. 4, 2522–2551. MR 2836129, DOI 10.1016/j.aim.2011.07.008
- Phillip S. Harrington, The Diederich-Fornæss index and good vector fields, Indiana Univ. Math. J. 68 (2019), no. 3, 721–760. MR 3978255, DOI 10.1512/iumj.2019.68.7690
- Phillip Harrington and Bingyuan Liu, The $\overline \partial$-Neumann operator with Sobolev estimates up to a finite order, Comm. Partial Differential Equations 45 (2020), no. 10, 1435–1450. MR 4160442, DOI 10.1080/03605302.2020.1774899
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
- Kenneth D. Koenig, Maximal hypoellipticity for the $\overline \partial$-Neumann problem, Adv. Math. 282 (2015), 128–219. MR 3374525, DOI 10.1016/j.aim.2015.06.013
- J. J. Kohn, Subellipticity of the $\bar \partial$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, DOI 10.1007/BF02395058
- J. J. Kohn, Quantitative estimates for global regularity, Analysis and geometry in several complex variables (Katata, 1997) Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 97–128. MR 1699828
- Bingyuan Liu, The Diederich-Fornæss index II: For domains of trivial index, Adv. Math. 344 (2019), 289–310. MR 3897434, DOI 10.1016/j.aim.2019.01.003
- Bingyuan Liu, The Diederich-Fornæss index I: For domains of non-trivial index, Adv. Math. 353 (2019), 776–801. MR 3993929, DOI 10.1016/j.aim.2018.11.011
- Bingyuan Liu, The Diederich-Fornæss index and the regularities on the $\overline \partial$-Neumann problem, Indiana Univ. Math. J. 71 (2022), no. 4, 1371–1395. MR 4481087, DOI 10.1512/iumj.2022.71.8982
- Stefano Pinton and Giuseppe Zampieri, The Diederich-Fornaess index and the global regularity of the $\bar \partial$-Neumann problem, Math. Z. 276 (2014), no. 1-2, 93–113. MR 3150194, DOI 10.1007/s00209-013-1188-z
- R. Michael Range, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. Amer. Math. Soc. 81 (1981), no. 2, 220–222. MR 593461, DOI 10.1090/S0002-9939-1981-0593461-7
- Emil J. Straube, A sufficient condition for global regularity of the $\overline \partial$-Neumann operator, Adv. Math. 217 (2008), no. 3, 1072–1095. MR 2383895, DOI 10.1016/j.aim.2007.08.003
- Emil J. Straube, Lectures on the $\scr L^2$-Sobolev theory of the $\overline {\partial }$-Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010. MR 2603659, DOI 10.4171/076
- Emil J. Straube, Sobolev regularity of the Bergman and Szegö projections in terms of $\overline {\partial }\oplus \overline {\partial }\,^*$ and $\overline {\partial }_b\oplus \overline {\partial }\,^*_b$, Proc. Amer. Math. Soc. 153 (2025), no. 4, 1669–1673. MR 4868973, DOI 10.1090/proc/17174
- Jihun Yum, CR-invariance of the Steinness index, Math. Z. 297 (2021), no. 3-4, 1043–1056. MR 4229591, DOI 10.1007/s00209-020-02545-1
Bibliographic Information
- Bingyuan Liu
- Affiliation: School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley Edinburg, Texas 78539
- MR Author ID: 1054123
- Email: bingyuan.liu@utrgv.edu
- Emil J. Straube
- Affiliation: Department of Mathematics, Texas A&M University College Station, Texas 77843
- MR Author ID: 168030
- Email: e-straube@tamu.edu
- Received by editor(s): May 29, 2023
- Received by editor(s) in revised form: December 1, 2023, April 15, 2024, and June 3, 2024
- Published electronically: May 1, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 32W05, 32T99
- DOI: https://doi.org/10.1090/tran/9451