Free probability of type B prime
HTML articles powered by AMS MathViewer
- by Katsunori Fujie and Takahiro Hasebe;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9464
- Published electronically: May 8, 2025
- HTML | PDF | Request permission
Abstract:
Free probability of type B was invented by Biane–Goodman–Nica, and then it was generalized by Belinschi–Shlyakhtenko and Février–Nica to infinitesimal free probability. The latter found its applications to eigenvalues of perturbed random matrices in the work of Shlyakhtenko and Cébron–Dahlqvist–Gabriel. This paper offers a new framework, called “free probability of type $\mathrm {B}’$ ”, which appears in the large size limit of independent unitarily invariant random matrices with perturbations. Our framework is related to Boolean, free, (anti)monotone, cyclic-(anti)monotone and conditionally free independences. We then apply the new framework to the principal minor of unitarily invariant random matrices, which leads to the definition of a multivariate inverse Markov–Krein transform and asymptotic infinitesimal freeness of principal minors.References
- O. Arizmendi, G. Cébron, and N. Gilliers, Combinatorics of cyclic-conditional freeness, arXiv:2311.13178.
- Octavio Arizmendi and Adrián Celestino, Polynomial with cyclic monotone elements with applications to random matrices with discrete spectrum, Random Matrices Theory Appl. 10 (2021), no. 2, Paper No. 2150020, 19. MR 4260215, DOI 10.1142/S2010326321500209
- Octavio Arizmendi, Jorge Garza-Vargas, and Daniel Perales, Finite free cumulants: multiplicative convolutions, genus expansion and infinitesimal distributions, Trans. Amer. Math. Soc. 376 (2023), no. 6, 4383–4420. MR 4586815, DOI 10.1090/tran/8884
- Octavio Arizmendi, Takahiro Hasebe, and Franz Lehner, Cyclic independence: Boolean and monotone, Algebr. Comb. 6 (2023), no. 6, 1697–1734. MR 4686134, DOI 10.5802/alco.309
- Serban T. Belinschi, Hari Bercovici, Mireille Capitaine, and Maxime Février, Outliers in the spectrum of large deformed unitarily invariant models, Ann. Probab. 45 (2017), no. 6A, 3571–3625. MR 3729610, DOI 10.1214/16-AOP1144
- Jinho Baik, Gérard Ben Arous, and Sandrine Péché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab. 33 (2005), no. 5, 1643–1697. MR 2165575, DOI 10.1214/009117905000000233
- Serban T. Belinschi, Hari Bercovici, and Mireille Capitaine, On the outlying eigenvalues of a polynomial in large independent random matrices, Int. Math. Res. Not. IMRN 4 (2021), 2588–2641. MR 4218332, DOI 10.1093/imrn/rnz080
- Serban Teodor Belinschi, C-free convolution for measures with unbounded support, Von Neumann algebras in Sibiu, Theta Ser. Adv. Math., vol. 10, Theta, Bucharest, 2008, pp. 1–7. MR 2512322
- S. T. Belinschi and D. Shlyakhtenko, Free probability of type $B$: analytic interpretation and applications, Amer. J. Math. 134 (2012), no. 1, 193–234. MR 2876144, DOI 10.1353/ajm.2012.0003
- Anis Ben Ghorbal and Michael Schürmann, Non-commutative notions of stochastic independence, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 3, 531–561. MR 1919720, DOI 10.1017/S0305004102006072
- Florent Benaych-Georges and Raj Rao Nadakuditi, The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, Adv. Math. 227 (2011), no. 1, 494–521. MR 2782201, DOI 10.1016/j.aim.2011.02.007
- Hari Bercovici and Dan Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), no. 3, 733–773. MR 1254116, DOI 10.1512/iumj.1993.42.42033
- Philippe Biane, Some properties of crossings and partitions, Discrete Math. 175 (1997), no. 1-3, 41–53. MR 1475837, DOI 10.1016/S0012-365X(96)00139-2
- Philippe Biane, Frederick Goodman, and Alexandru Nica, Non-crossing cumulants of type B, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2263–2303. MR 1973990, DOI 10.1090/S0002-9947-03-03196-9
- Marek Bożejko, Michael Leinert, and Roland Speicher, Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175 (1996), no. 2, 357–388. MR 1432836
- Marek Bożejko and Roland Speicher, $\psi$-independent and symmetrized white noises, Quantum probability & related topics, QP-PQ, VI, World Sci. Publ., River Edge, NJ, 1991, pp. 219–236. MR 1149828
- Guillaume Cébron, Antoine Dahlqvist, and Franck Gabriel, Freeness of type $B$ and conditional freeness for random matrices, Indiana Univ. Math. J. 73 (2024), no. 3, 1207–1252. MR 4780811
- Guillaume Cébron and Nicolas Gilliers, Asymptotic cyclic-conditional freeness of random matrices, Random Matrices Theory Appl. 13 (2024), no. 1, Paper No. 2350014, 48. MR 4712572, DOI 10.1142/S2010326323500144
- B. Collins, K. Fujie, T. Hasebe, F. Leid, and N. Sakuma, Fluctuations of eigenvalues of a polynomial on Haar unitary and finite rank matrices, arXiv:2309.15396.
- Benoit Collins, Takahiro Hasebe, and Noriyoshi Sakuma, Free probability for purely discrete eigenvalues of random matrices, J. Math. Soc. Japan 70 (2018), no. 3, 1111–1150. MR 3830802, DOI 10.2969/jmsj/77147714
- Benoît Collins, Felix Leid, and Noriyoshi Sakuma, Matrix models for cyclic monotone and monotone independences, Electron. Commun. Probab. 29 (2024), Paper No. 58, 14. MR 4814239, DOI 10.1214/24-ECP622
- Benoît Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 17 (2003), 953–982. MR 1959915, DOI 10.1155/S107379280320917X
- Benoît Collins and Piotr Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), no. 3, 773–795. MR 2217291, DOI 10.1007/s00220-006-1554-3
- Maxime Février and Alexandru Nica, Infinitesimal non-crossing cumulants and free probability of type B, J. Funct. Anal. 258 (2010), no. 9, 2983–3023. MR 2595732, DOI 10.1016/j.jfa.2009.10.010
- Maxime Février, Mitja Mastnak, Alexandru Nica, and Kamil Szpojankowski, A construction which relates c-freeness to infinitesimal freeness, Adv. in Appl. Math. 110 (2019), 299–341. MR 3988723, DOI 10.1016/j.aam.2019.06.002
- Uwe Franz, Multiplicative monotone convolutions, Quantum probability, Banach Center Publ., vol. 73, Polish Acad. Sci. Inst. Math., Warsaw, 2006, pp. 153–166. MR 2423123, DOI 10.4064/bc73-0-10
- Katsunori Fujie and Takahiro Hasebe, The spectra of principal submatrices in rotationally invariant Hermitian random matrices and the Markov-Krein correspondence, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), no. 1, 109–123. MR 4359787, DOI 10.30757/alea.v19-05
- T. Hasebe, A three-state independence in non-commutative probability, arXiv:1009.1505.
- Sergei Kerov, Interlacing measures, Kirillov’s seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 35–83. MR 1618739, DOI 10.1090/trans2/181/02
- Pierre Mergny and Marc Potters, Rank one HCIZ at high temperature: interpolating between classical and free convolutions, SciPost Phys. 12 (2022), no. 1, Paper No. 022, 37. MR 4367356, DOI 10.21468/scipostphys.12.1.022
- N. Muraki, Monotonic convolution and monotonic Lévy-Hinčin formula, preprint, 2000.
- Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR 2266879, DOI 10.1017/CBO9780511735127
- Victor Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), no. 1-3, 195–222. MR 1483446, DOI 10.1016/S0012-365X(96)00365-2
- D. Shlyakhtenko, Free probability of type-B and asymptotics of finite-rank perturbations of random matrices, Indiana Univ. Math. J. 67 (2018), no. 2, 971–991. MR 3798863, DOI 10.1512/iumj.2018.67.7294
- Roland Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), no. 4, 611–628. MR 1268597, DOI 10.1007/BF01459754
- Roland Speicher and Reza Woroudi, Boolean convolution, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 267–279. MR 1426845, DOI 10.1090/fic/012/13
- Dan Voiculescu, Symmetries of some reduced free product $C^\ast$-algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 556–588. MR 799593, DOI 10.1007/BFb0074909
- Dan Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991), no. 1, 201–220. MR 1094052, DOI 10.1007/BF01245072
Bibliographic Information
- Katsunori Fujie
- Affiliation: Department of Mathematics, Hokkaido University, North 10 West 8, Kita-Ku, Sapporo 060-0810, Japan
- Address at time of publication: Department of Mathematics, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- MR Author ID: 1481920
- ORCID: 0009-0007-5119-4393
- Email: fujie.katsunori.42m@st.kyoto-u.ac.jp
- Takahiro Hasebe
- Affiliation: Department of Mathematics, Hokkaido University, North 10 West 8, Kita-Ku, Sapporo 060-0810, Japan
- MR Author ID: 843606
- Email: thasebe@math.sci.hokudai.ac.jp
- Received by editor(s): November 8, 2023
- Received by editor(s) in revised form: July 13, 2024, and October 21, 2024
- Published electronically: May 8, 2025
- Additional Notes: The first author was supported by the Hokkaido University Ambitious Doctoral Fellowship (Information Science and AI) and JSPS Research Fellowship for Young Scientists PD (KAKENHI Grant Number 24KJ1318).
The second author was supported by JSPS Grant-in-Aid for Transformative Research Areas (B) grant no. 23H03800JSPS, JSPS Grant-in-Aid for Young Scientists 19K14546 and JSPS Scientific Research 18H01115. This work was supported by JSPS Open Partnership Joint Research Projects grant no. JPJSBP120209921 and Bilateral Joint Research Projects (JSPS-MEAE-MESRI, grant no. JPJSBP120203202). - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 46L54, 60B20
- DOI: https://doi.org/10.1090/tran/9464