A continuum of invariant measures for the periodic KdV and mKdV equations
HTML articles powered by AMS MathViewer
- by Andreia Chapouto and Justin Forlano;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9489
- Published electronically: June 6, 2025
- PDF | Request permission
Abstract:
We consider the real-valued defocusing modified Korteweg-de Vries equation (mKdV) on the circle. Based on the complete integrability of mKdV, Killip-Vişan-Zhang (2018) discovered a conserved quantity which they used to prove low regularity a priori bounds for solutions. It has been an open question if this conserved quantity can be used to define invariant measures supported at fractional Sobolev regularities. Motivated by this question, we construct probability measures supported on $H^s(\mathbb {T})$ for $0<s<1/2$ invariant under the mKdV flow. We then use the Miura transform to obtain invariant measures for the Korteweg-de Vries equation, whose supports are rougher than the white noise measure. We also obtain analogous results for the defocusing cubic nonlinear Schrödinger equation. These invariant measures cover the lowest possible regularities for which the flows of these equations are well-posed.References
- N. Barashkov and M. Gubinelli, A variational method for $\Phi ^4_3$, Duke Math. J. 169 (2020), no. 17, 3339–3415. MR 4173157, DOI 10.1215/00127094-2020-0029
- Michelle Boué and Paul Dupuis, A variational representation for certain functionals of Brownian motion, Ann. Probab. 26 (1998), no. 4, 1641–1659. MR 1675051, DOI 10.1214/aop/1022855876
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209–262. MR 1215780, DOI 10.1007/BF01895688
- J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), no. 1, 1–26. MR 1309539
- Jean Bourgain, Invariant measures for the $2$D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, 421–445. MR 1374420
- Jean Bourgain, Nonlinear Schrödinger equations, Hyperbolic equations and frequency interactions (Park City, UT, 1995) IAS/Park City Math. Ser., vol. 5, Amer. Math. Soc., Providence, RI, 1999, pp. 3–157. MR 1662829, DOI 10.1090/coll/046
- Nicolas Burq and Nikolay Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 1–30. MR 3141727, DOI 10.4171/JEMS/426
- S. Cambronero and H. P. McKean, The ground state eigenvalue of Hill’s equation with white noise potential, Comm. Pure Appl. Math. 52 (1999), no. 10, 1277–1294. MR 1699969, DOI 10.1002/(SICI)1097-0312(199910)52:10<1277::AID-CPA5>3.0.CO;2-L
- A. Chapouto, G. Li, T. Oh, Deep-water and shallow-water limits of statistical equilibria for the intermediate long wave equation, arXiv:2409.06905 [math.AP].
- Michael Christ, James Colliander, and Terrence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293. MR 2018661
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$, J. Amer. Math. Soc. 16 (2003), no. 3, 705–749. MR 1969209, DOI 10.1090/S0894-0347-03-00421-1
- Arnaud Debussche and Yoshio Tsutsumi, Quasi-invariance of Gaussian measures transported by the cubic NLS with third-order dispersion on $\mathbf {T}$, J. Funct. Anal. 281 (2021), no. 3, Paper No. 109032, 23. MR 4247030, DOI 10.1016/j.jfa.2021.109032
- Yu Deng, Invariance of the Gibbs measure for the Benjamin-Ono equation, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 5, 1107–1198. MR 3346690, DOI 10.4171/JEMS/528
- Yu Deng, Nikolay Tzvetkov, and Nicola Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation III, Comm. Math. Phys. 339 (2015), no. 3, 815–857. MR 3385985, DOI 10.1007/s00220-015-2431-8
- Jacob Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8 (1958), 699–708. MR 102760
- J. Forlano, A remark on the well-posedness of the modified KdV equation in $L^2$, Proc. Roy. Soc. Edinburgh Sect. A (2024), 1–26, \PrintDOI{10.1017/prm.2024.92}.
- J. Forlano, R. Killip, and M. Vişan, Invariant measures for mKdV and KdV in infinite volume, arXiv:2401.04292 [math.AP].
- L. Friedlander, An invariant measure for the equation $u_{tt}-u_{xx}+u^3=0$, Comm. Math. Phys. 98 (1985), no. 1, 1–16. MR 785258
- Patrick Gérard, Thomas Kappeler, and Peter Topalov, Sharp well-posedness results of the Benjamin-Ono equation in $H^s(\Bbb T,\Bbb R)$ and qualitative properties of its solutions, Acta Math. 231 (2023), no. 1, 31–88. MR 4652410, DOI 10.4310/acta.2023.v231.n1.a2
- Trishen Gunaratnam, Tadahiro Oh, Nikolay Tzvetkov, and Hendrik Weber, Quasi-invariant Gaussian measures for the nonlinear wave equation in three dimensions, Probab. Math. Phys. 3 (2022), no. 2, 343–379. MR 4452511, DOI 10.2140/pmp.2022.3.343
- Yaroslav Gaek, On a property of normal distribution of any stochastic process, Czechoslovak Math. J. 8(83) (1958), 610–618 (Russian, with English summary). MR 104290
- Benjamin Harrop-Griffiths, Rowan Killip, and Monica Vişan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\Bbb R)$, Forum Math. Pi 12 (2024), Paper No. e6, 86. MR 4726498, DOI 10.1017/fmp.2024.4
- Shizuo Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214–224. MR 23331, DOI 10.2307/1969123
- Thomas Kappeler and Jan-Cornelius Molnar, On the well-posedness of the defocusing mKdV equation below $L^2$, SIAM J. Math. Anal. 49 (2017), no. 3, 2191–2219. MR 3665197, DOI 10.1137/16M1096979
- Thomas Kappeler and Peter Topalov, Riccati map on $L^2_0({\Bbb T})$ and its applications, J. Math. Anal. Appl. 309 (2005), no. 2, 544–566. MR 2154135, DOI 10.1016/j.jmaa.2004.09.061
- T. Kappeler and P. Topalov, Global well-posedness of mKdV in $L^2(\Bbb T,\Bbb R)$, Comm. Partial Differential Equations 30 (2005), no. 1-3, 435–449. MR 2131061, DOI 10.1081/PDE-200050089
- T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^{-1}(\Bbb T,\Bbb R)$, Duke Math. J. 135 (2006), no. 2, 327–360. MR 2267286, DOI 10.1215/S0012-7094-06-13524-X
- Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93–128. MR 759907
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573–603. MR 1329387, DOI 10.1090/S0894-0347-96-00200-7
- Rowan Killip, Jason Murphy, and Monica Visan, Invariance of white noise for KdV on the line, Invent. Math. 222 (2020), no. 1, 203–282. MR 4145790, DOI 10.1007/s00222-020-00964-9
- Rowan Killip and Monica Vişan, KdV is well-posed in $H^{-1}$, Ann. of Math. (2) 190 (2019), no. 1, 249–305. MR 3990604, DOI 10.4007/annals.2019.190.1.4
- Rowan Killip, Monica Vişan, and Xiaoyi Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct. Anal. 28 (2018), no. 4, 1062–1090. MR 3820439, DOI 10.1007/s00039-018-0444-0
- Herbert Koch and Daniel Tataru, Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J. 167 (2018), no. 17, 3207–3313. MR 3874652, DOI 10.1215/00127094-2018-0033
- Peter D. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math. 28 (1975), 141–188. MR 369963, DOI 10.1002/cpa.3160280105
- Joel L. Lebowitz, Harvey A. Rose, and Eugene R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), no. 3-4, 657–687. MR 939505, DOI 10.1007/BF01026495
- Guopeng Li, Tadahiro Oh, and Guangqu Zheng, On the deep-water and shallow-water limits of the intermediate long wave equation from a statistical viewpoint, Trans. London Math. Soc. 12 (2025), no. 1, Paper No. e70005, 83. MR 4878416, DOI 10.1112/tlm3.70005
- H. P. McKean, Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Comm. Math. Phys. 168 (1995), no. 3, 479–491. MR 1328250
- Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204. MR 252825, DOI 10.1063/1.1664700
- Luc Molinet, Sharp ill-posedness results for the KdV and mKdV equations on the torus, Adv. Math. 230 (2012), no. 4-6, 1895–1930. MR 2927357, DOI 10.1016/j.aim.2012.03.026
- Luc Molinet, Didier Pilod, and Stéphane Vento, On unconditional well-posedness for the periodic modified Korteweg–de Vries equation, J. Math. Soc. Japan 71 (2019), no. 1, 147–201. MR 3909918, DOI 10.2969/jmsj/76977697
- Andrea R. Nahmod, Tadahiro Oh, Luc Rey-Bellet, and Gigliola Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1275–1330. MR 2928851, DOI 10.4171/JEMS/333
- Kenji Nakanishi, Hideo Takaoka, and Yoshio Tsutsumi, Local well-posedness in low regularity of the mKdV equation with periodic boundary condition, Discrete Contin. Dyn. Syst. 28 (2010), no. 4, 1635–1654. MR 2679725, DOI 10.3934/dcds.2010.28.1635
- Tadahiro Oh, Invariance of the white noise for KdV, Comm. Math. Phys. 292 (2009), no. 1, 217–236. MR 2540076, DOI 10.1007/s00220-009-0856-7
- Tadahiro Oh, White noise for KdV and mKdV on the circle, Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, B18, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, pp. 99–124. MR 2762393
- Tadahiro Oh, Mamoru Okamoto, and Leonardo Tolomeo, Focusing $\Phi ^4_3$-model with a Hartree-type nonlinearity, Mem. Amer. Math. Soc. 304 (2024), no. 1529, vi+143. MR 4850409, DOI 10.1090/memo/1529
- Tadahiro Oh, Mamoru Okamoto, and Leonardo Tolomeo, Stochastic quantization of the $\Phi ^3_3$-model, Memoirs of the European Mathematical Society, vol. 16, EMS Press, Berlin, 2025. MR 4867559, DOI 10.4171/mems/16
- Tadahiro Oh, Jeremy Quastel, and Benedek Valkó, Interpolation of Gibbs measures with white noise for Hamiltonian PDE, J. Math. Pures Appl. (9) 97 (2012), no. 4, 391–410 (English, with English and French summaries). MR 2899812, DOI 10.1016/j.matpur.2011.11.003
- Tadahiro Oh and Nikolay Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Related Fields 169 (2017), no. 3-4, 1121–1168. MR 3719064, DOI 10.1007/s00440-016-0748-7
- Tadahiro Oh and Nikolay Tzvetkov, Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 6, 1785–1826. MR 4092899, DOI 10.4171/jems/956
- Fabrice Planchon, Nikolay Tzvetkov, and Nicola Visciglia, Modified energies for the periodic generalized KdV equation and applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), no. 4, 863–917. MR 4620335, DOI 10.4171/aihpc/62
- Jeremy Quastel and Benedek Valkó, KdV preserves white noise, Comm. Math. Phys. 277 (2008), no. 3, 707–714. MR 2365449, DOI 10.1007/s00220-007-0372-6
- Robert Schippa, On the existence of periodic solutions to the modified Korteweg–de Vries equation below $H^{1/2}(\Bbb T)$, J. Evol. Equ. 20 (2020), no. 3, 725–776. MR 4142237, DOI 10.1007/s00028-019-00538-0
- Hideo Takaoka and Yoshio Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Int. Math. Res. Not. 56 (2004), 3009–3040. MR 2097834, DOI 10.1155/S1073792804140555
- Masayoshi Tsutsumi, Weighted Sobolev spaces and rapidly decreasing solutions of some nonlinear dispersive wave equations, J. Differential Equations 42 (1981), no. 2, 260–281. MR 641651, DOI 10.1016/0022-0396(81)90029-2
- N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields 146 (2010), no. 3-4, 481–514. MR 2574736, DOI 10.1007/s00440-008-0197-z
- Nikolay Tzvetkov, Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations, Forum Math. Sigma 3 (2015), Paper No. e28, 35. MR 3482274, DOI 10.1017/fms.2015.27
- Nikolay Tzvetkov, New non degenerate invariant measures for the Benjamin-Ono equation, C. R. Math. Acad. Sci. Paris 362 (2024), 77–86. MR 4703677, DOI 10.5802/crmath.536
- Nikolay Tzvetkov and Nicola Visciglia, Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 2, 249–299 (2013) (English, with English and French summaries). MR 3112200, DOI 10.24033/asens.2189
- Nikolay Tzvetkov and Nicola Visciglia, Invariant measures and long-time behavior for the Benjamin-Ono equation, Int. Math. Res. Not. IMRN 17 (2014), 4679–4714. MR 3257548, DOI 10.1093/imrn/rnt094
- Ali Süleyman Üstünel, Variational calculation of Laplace transforms via entropy on Wiener space and applications, J. Funct. Anal. 267 (2014), no. 8, 3058–3083. MR 3255483, DOI 10.1016/j.jfa.2014.07.006
- P. E. Zhidkov, An invariant measure for the nonlinear Schrödinger equation, Dokl. Akad. Nauk SSSR 317 (1991), no. 3, 543–546 (Russian); English transl., Soviet Math. Dokl. 43 (1991), no. 2, 431–434. MR 1121337
- P. E. Zhidkov, Invariant measures for the Korteweg-de Vries equation that are generated by higher conservation laws, Mat. Sb. 187 (1996), no. 6, 21–40 (Russian, with Russian summary); English transl., Sb. Math. 187 (1996), no. 6, 803–822. MR 1407677, DOI 10.1070/SM1996v187n06ABEH000134
- Peter E. Zhidkov, On an infinite sequence of invariant measures for the cubic nonlinear Schrödinger equation, Int. J. Math. Math. Sci. 28 (2001), no. 7, 375–394. MR 1893151, DOI 10.1155/S0161171201011450
- Peter E. Zhidkov, Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. MR 1831831
Bibliographic Information
- Andreia Chapouto
- Affiliation: Laboratoire de mathématiques de Versailles, UVSQ, Universite Paris-Saclay, CNRS, 45 avenue des États-Unis 78035 Versailles, Cedex, France; \normalfont and School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom; \normalfont and Department of Mathematics, University of California, Los Angeles, California 90095
- MR Author ID: 1190711
- Email: andreia.chapouto@uvsq.fr
- Justin Forlano
- Affiliation: School of Mathematics, 9 Rainforest Walk, Monash University, VIC 3800, Australia; \normalfont and School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom; \normalfont and Department of Mathematics, University of California, Los Angeles, California 90095
- MR Author ID: 1346573
- ORCID: 0000-0002-8118-9911
- Email: justin.forlano@monash.edu
- Received by editor(s): June 14, 2024
- Received by editor(s) in revised form: January 28, 2025
- Published electronically: June 6, 2025
- Additional Notes: Both authors were supported by the European Research Council (grant no. 864138 “SingStochDispDyn”)
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 35Q53, 35Q55, 60H30
- DOI: https://doi.org/10.1090/tran/9489