Uniform property $\Gamma$ and the small boundary property
HTML articles powered by AMS MathViewer
- by Grigoris Kopsacheilis, Hung-Chang Liao, Aaron Tikuisis and Andrea Vaccaro;
- Trans. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/tran/9506
- Published electronically: June 26, 2025
- PDF | Request permission
Abstract:
We prove that, for a free action $\alpha \colon G \curvearrowright X$ of a countably infinite discrete amenable group on a compact metric space, the small boundary property is implied by uniform property $\Gamma$ of the Cartan subalgebra $(C(X) \subseteq C(X) \rtimes _\alpha G)$. The reverse implication has been demonstrated by Kerr and Szabó, from which we obtain that these two conditions are equivalent. We moreover show that, if $\alpha$ is also minimal, then almost finiteness of $\alpha$ is implied by tracial $\mathcal {Z}$-stability of the subalgebra $(C(X) \subseteq C(X) \rtimes _\alpha G)$. The reverse implication is due to Kerr, resulting in the equivalence of these two properties as well. As an application, we prove that if $\alpha \colon G \curvearrowright X$ and $\beta \colon H \curvearrowright Y$ are free actions and $\alpha$ has the small boundary property, then $\alpha \times \beta \colon G \times H \curvearrowright X \times Y$ has the small boundary property. An analogous permanence property is obtained for almost finiteness in case $\alpha$ and $\beta$ are free minimal actions.References
- Joan Bosa, Nathanial P. Brown, Yasuhiko Sato, Aaron Tikuisis, Stuart White, and Wilhelm Winter, Covering dimension of $\rm C^*$-algebras and 2-coloured classification, Mem. Amer. Math. Soc. 257 (2019), no. 1233, vii+97. MR 3908669, DOI 10.1090/memo/1233
- Jonathan H. Brown, Gabriel Nagy, Sarah Reznikoff, Aidan Sims, and Dana P. Williams, Cartan subalgebras in $C^*$-algebras of Hausdorff étale groupoids, Integral Equations Operator Theory 85 (2016), no. 1, 109–126. MR 3503181, DOI 10.1007/s00020-016-2285-2
- José R. Carrión, Jorge Castillejos, Samuel Evington, James Gabe, Christopher Schafhauser, Aaron Tikuisis, and Stuart White, Tracially complete $C^\ast$-algebras, arXiv:2310.20594.
- Jorge Castillejos, Samuel Evington, Aaron Tikuisis, and Stuart White, Uniform property $\Gamma$, Int. Math. Res. Not. IMRN 13 (2022), 9864–9908. MR 4447140, DOI 10.1093/imrn/rnaa282
- Jorge Castillejos, Samuel Evington, Aaron Tikuisis, Stuart White, and Wilhelm Winter, Nuclear dimension of simple $\rm C^*$-algebras, Invent. Math. 224 (2021), no. 1, 245–290. MR 4228503, DOI 10.1007/s00222-020-01013-1
- A. Connes and V. Jones, A $\textrm {II}_{1}$ factor with two nonconjugate Cartan subalgebras, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 211–212. MR 640947, DOI 10.1090/S0273-0979-1982-14981-3
- Danny Crytser and Gabriel Nagy, Traces arising from regular inclusions, J. Aust. Math. Soc. 103 (2017), no. 2, 190–230. MR 3703923, DOI 10.1017/S1446788716000501
- George A. Elliott and Zhuang Niu, On the small boundary property, $\mathcal {Z}$-stability, and bauer simplexes, arXiv:2406.09748.
- Eusebio Gardella, Shirly Geffen, Petr Naryshkin, and Andrea Vaccaro, Dynamical comparison and $\mathcal Z$-stability for crossed products of simple $C^*$-algebras, Adv. Math. 438 (2024), Paper No. 109471, 31. MR 4686745, DOI 10.1016/j.aim.2023.109471
- Eusebio Gardella, Ilan Hirshberg, and Andrea Vaccaro, Strongly outer actions of amenable groups on $\mathcal {Z}$-stable nuclear $C^*$-algebras, J. Math. Pures Appl. (9) 162 (2022), 76–123 (English, with English and French summaries). MR 4417284, DOI 10.1016/j.matpur.2022.04.003
- Julien Giol and David Kerr, Subshifts and perforation, J. Reine Angew. Math. 639 (2010), 107–119. MR 2608192, DOI 10.1515/CRELLE.2010.012
- Guihua Gong, Huaxin Lin, and Zhuang Niu. A review of the Elliott program of classification of simple amenable $C^\ast$-algebras. arXiv:2311.14238.
- Ilan Hirshberg and Joav Orovitz, Tracially $\scr {Z}$-absorbing $C^\ast$-algebras, J. Funct. Anal. 265 (2013), no. 5, 765–785. MR 3063095, DOI 10.1016/j.jfa.2013.05.005
- David Kerr, Dimension, comparison, and almost finiteness, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 11, 3697–3745. MR 4167017, DOI 10.4171/jems/995
- David Kerr and Hangenf Li, The small boundary property in products, arXiv:2406.12697.
- David Kerr and Gábor Szabó, Almost finiteness and the small boundary property, Comm. Math. Phys. 374 (2020), no. 1, 1–31. MR 4066584, DOI 10.1007/s00220-019-03519-z
- Eberhard Kirchberg, Central sequences in $C^*$-algebras and strongly purely infinite algebras, Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 175–231. MR 2265050, DOI 10.1007/978-3-540-34197-0_{1}0
- Alexander Kumjian, On $C^\ast$-diagonals, Canad. J. Math. 38 (1986), no. 4, 969–1008. MR 854149, DOI 10.4153/CJM-1986-048-0
- Xin Li and Jean Renault, Cartan subalgebras in $\textrm {C}^*$-algebras. Existence and uniqueness, Trans. Amer. Math. Soc. 372 (2019), no. 3, 1985–2010. MR 3976582, DOI 10.1090/tran/7654
- Hung-Chang Liao and Aaron Tikuisis, Almost finiteness, comparison, and tracial $\mathcal {Z}$-stability, J. Funct. Anal. 282 (2022), no. 3, Paper No. 109309, 25. MR 4339011, DOI 10.1016/j.jfa.2021.109309
- Huaxin Lin, Tracially AF $C^*$-algebras, Trans. Amer. Math. Soc. 353 (2001), no. 2, 693–722. MR 1804513, DOI 10.1090/S0002-9947-00-02680-5
- Huaxin Lin, Classification of simple $C^\ast$-algebras of tracial topological rank zero, Duke Math. J. 125 (2004), no. 1, 91–119. MR 2097358, DOI 10.1215/S0012-7094-04-12514-X
- Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, DOI 10.1007/BF02810577
- Narutaka Ozawa and Sorin Popa, On a class of $\textrm {II}_1$ factors with at most one Cartan subalgebra, Ann. of Math. (2) 172 (2010), no. 1, 713–749. MR 2680430, DOI 10.4007/annals.2010.172.713
- Jean Renault, Cartan subalgebras in $C^*$-algebras, Irish Math. Soc. Bull. 61 (2008), 29–63. MR 2460017
- Mikael Rørdam and Erling Størmer. Classification of nuclear $C^\ast$-algebras. Entropy in operator algebras, volume 126 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Operator Algebras and Non-commutative Geometry, 7.
- M. Shub and B. Weiss, Can one always lower topological entropy?, Ergodic Theory Dynam. Systems 11 (1991), no. 3, 535–546. MR 1125888, DOI 10.1017/S0143385700006325
- Gábor Szabó and Lise Wouters, Equivariant property Gamma and the tracial local-to-global principle for $C^\ast$-dynamics, Anal. PDE., to appear. arXiv:2301.12846.
- Hannes Thiel, The Cuntz semigroup, Lecture notes. University of Münster, 2016. http://hannesthiel.org/wp-content/OtherWriting/CuScript.pdf.
- Stuart White, Abstract classification theorems for amenable $C^\ast$-algebras, ICM—International Congress of Mathematicians. Vol. 4. Sections 5–8, EMS Press, Berlin, [2023] ©2023, pp. 3314–3338. MR 4680363
- Wilhelm Winter, Nuclear dimension and $\scr {Z}$-stability of pure $\rm C^*$-algebras, Invent. Math. 187 (2012), no. 2, 259–342. MR 2885621, DOI 10.1007/s00222-011-0334-7
- Wilhelm Winter, Structure of nuclear $\rm C^*$-algebras: from quasidiagonality to classification and back again, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1801–1823. MR 3966830
- Wilhelm Winter and Joachim Zacharias, Completely positive maps of order zero, Münster J. Math. 2 (2009), 311–324. MR 2545617
Bibliographic Information
- Grigoris Kopsacheilis
- Affiliation: Mathematisches Institut, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
- MR Author ID: 1630090
- ORCID: 0000-0002-2773-0420
- Email: gkopsach@uni-muenster.de
- Hung-Chang Liao
- Affiliation: Department of Mathematics and Statistics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, Canada K1N 6N5
- MR Author ID: 1154456
- Email: hliao@uottawa.ca
- Aaron Tikuisis
- Affiliation: Department of Mathematics and Statistics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, Canada K1N 6N5
- MR Author ID: 924851
- Email: aaron.tikuisis@uottawa.ca
- Andrea Vaccaro
- Affiliation: Mathematisches Institut, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
- MR Author ID: 1229910
- ORCID: 0000-0003-3563-9704
- Email: avaccaro@uni-muenster.de
- Received by editor(s): June 21, 2024
- Received by editor(s) in revised form: December 14, 2024, and April 9, 2025
- Published electronically: June 26, 2025
- Additional Notes: The first and fourth authors were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure, through SFB 1442 and ERC Advanced Grant 834267–AMAREC. The third author was supported by an NSERC Discovery Grant and by a Visiting Research Fellowship at All Souls College.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
- MSC (2020): Primary 46L05, 37B05
- DOI: https://doi.org/10.1090/tran/9506