reference to Schwarz, loc. cit., p. 121. It remains to show that the function g (or u) assumes the required boundary values. To do this Harnack employs as a majorante the Green’s function belonging to a polygon Q lying wholly without F and having a point of its boundary in common with a point A of the boundary of F. His analysis suffices to show that the function g (or u) will take on the required boundary value in the point A, but not that this will be the case for a point of the boundary of F that cannot be reached by a polygon Q. Thus an ordinary beak-shaped cusp (Schnabelspitze) could not be treated by Harnack’s method. It appears, then, that Harnack did not solve the problem he proposed even for regions F bounded by a finite number of pieces of analytic curves, to say nothing of regions, some of the points of whose boundaries cannot be approached along a continuous curve lying wholly within F. In my solution, I have employed the same method of the majorante (the function U) adopted by Harnack, but have so chosen U that my proof covers all cases; and I have pointed out that there are here included cases which, I believe, had never been thought of before.—W. F. O.

P. 312, l. 1 up.
For 167 read 67.

P. 314, l. 10.
After whether insert if.

E. Kasner: The invariant theory of the inversion group

P. 431, l. 6 up.
The complete reference is: Maurer, Ueber die Endlichkeit der Invarianten-Systeme, Münchener Sitzungsberichte, vol. 29 (1899), pp. 147–175.

P. 440, l. 18.
For $F(\lambda f + MQ)$ read $F_{\lambda f + MQ}$.

P. 443, l. 9.
" $(ABCD)$ " $(ABCu)$.

P. 445, l. 12.
The lower right hand element of the determinant g_{123} should be $\lambda_1\mu_1$.

P. 448, l. 17.
For circles read cycyles.

P. 449, l. 3.
" I_i " I_i^k.

P. 467, l. 13.
" Σ " Σ.

P. 469, l. 18.
" x " φ.

P. 469, l. 5 up.
" ϕ " Φ.

P. 475, l. 15.
" $a_i - a_1$ " $a_i - a_2$.

P. 477, l. 8 up.
The expression in braces should be squared.

P. 480, l. 20.
For l_i read l.

P. 489, l. 5 up.
" WEITER " WEILER.