
P. 501, l. 5. For < e read ≃ e.

Volume 2.

E. J. Wilczynski: Invariants of systems of linear differential equations.

P. 9, l. 12. For semivariants read seminvariants.
P. 22, l. 3. Make the expression into an equation by the addition of = 0.

J. C. Fields: On the reduction of the general Abelian integral.

P. 79, l. 19. For r + s + 2 = σ read r + s − 2 = σ.
P. 80, l. 2 up. “ n + 3 “ n − 3.
P. 85, l. 2. “ + ∑ \( \frac{d+p}{\lambda=1} \) “ − ∑ \( \frac{d+p}{\lambda=1} \).

H. F. Stecker: On the determination of surfaces ....

P. 155, l. 11 up. Replace \( d\mu \) in the expression for \( F_2 \) by \( dv \).

P. 159, l. 7. For \( m + \beta - 1 \) read \( m - \beta - 1 \).
P. 163, l. 17 up. “ \( V_1 \) “ \( V_2 \).

E. B. Van Vleck: On the convergence of continued fractions ....

Pp. 223, 224. The last line of p. 224 is to be set at the top of p. 223.
P. 226, l. 9 up. For \( -a_n M^2_{n-1} \) read \( a_n M^2_{n-1} \).
P. 233, l. 16. “ \( |a_n|/|\beta_n| \) “ \( a_n/|\beta_n| \).

W. F. Osgood: On a fundamental property of a minimum ....

P. 293, l. 7. For its longest side read the greatest of the differences \( \tau_{i+1} - \tau_i \).