NOTES AND ERRATA: VOLUMES 1, 2, 3

VOLUME 1

F. R. Moulton: On a class of particular solutions

P. 28, formula (26). For \(\frac{x - \frac{1}{\sqrt{3}}}{\left(x - \frac{1}{\sqrt{3}}\right)^2} \) read \(\frac{x - \frac{1}{\sqrt{3}}}{\left(x - \frac{1}{\sqrt{3}}\right)^2} \).

- 1. 6 up. " 1.22 " 1.18 .
- 1. " 2.4 " 4.6 .
- 1. 5 up. " 0.93 " 0.77 .

VOLUME 2

L. E. Dickson: Canonical forms of quaternary

P. 107, l. 1. For \(\xi' \) read \(\xi' \).

P. 109, l. 7 up. " chose " choose.

P. 110, l. 4. " \(L_{11} T_{1-1}, L_{2n} \) " \(L_{11} T_{1-1} L_{2n} \).

P. 113, l. 22. " determines \(\delta_{12} \) " determines \(\beta_{12} \).

P. 121, l. 2 of § 15. " = " +.

P. 125, middle. The number (33) refers only to the first of the two equations.

G. A. Miller: Determination of all the groups of order \(p^n \) ...

P. 263, l. 5. For \(t^i \) read \(t_7 \).

- 1. 10. " \(p > 3 \) " \(n = 2, 3, \ldots, p - 2 \).
- 1. 11. \(\text{Read } (t_7^{-1} t_6 t_7)^{-1} P_n^2 (t_7^{-1} t_6 t_7) = P_3 P_3^n = P_2^n P_2^n = t_6^n P_2^n t_6^n \).

P. 271, l. 4. For \(0, p^4 - 1 \) read \(p^2 - 1, p^2 (p^2 - 1) \).

Pp. 262, 263. From the second and third corrections it follows that the \(p(p - 1) \) subgroups of order \(p \), mentioned in the second line from the bottom of p. 262, form two equal conjugate sets, and that the non-invariant subgroups of order \(p^3 \) and type \((1, 1)\) contained in \(I \) are conjugate under \(I \) in sets of \((p - 1)/2\) instead of forming a single conjugate set, as is stated in line 18 on p. 263. There are, therefore, eight groups of order \(p^n (p > 2) \) which are non-abelian and include the abelian group of type \((m-2, 1)\); i.e., \(p = 3 \).