does not form an exception. The existence of G_8 when $p > 3$ may be proved in exactly the same manner as when $p = 3$. Each of the five groups G_1, G_3, G_5, G_7, G_8 is conformal with the abelian group of type $(m - 3, 1, 1)$, G_2 and G_4 are conformal with the abelian group of type $(m - 3, 2)$ while G_6 is conformal with the one of type $(m - 1, 1)$. Four of these groups (G_1, G_2, G_5, G_6) contain invariant cyclic subgroups of order p^{m-2} while these subgroups are conjugate, in sets of p, in the remaining four groups.

W. F. Osgood: *On a fundamental theorem* . . .

P. 278, l. 5. After point insert and no two curves corresponding to two distinct values of a will intersect each other.

E. J. Wilczynski: *Geometry of a simultaneous system* . . .

P. 359, l. 10 up. For form $y = \lambda \eta, z = \mu \zeta$ read form (2).

L. E. Dickson: *Theory of linear groups in an arbitrary field*.

P. 370, l. 5. For $T_5 - 1 \cdots T_3 - 1$ read $T_2 - 1 \cdots T_5 - 1$.

P. 372, l. 4 up. In $A'_{13}: Y_{12}^{13} = - Y_{23}$, " Y_{23}.

P. 377, l. 15. For $\Sigma s'$ " $\Sigma s'$.

P. 384, l. 9. " $Y_{13} \eta_3$ " $Y_{12} \eta_3$.

P. 388, l. 15. " subscript $- \lambda \nu^{-1}$ " $- \lambda \nu$.

P. 388, l. 8 up. " $p^{6n} \Omega_1$ " $(p^{6n} - 1) \Omega_1$.

P. 390, l. 7 up. " ξ_1 " η_1.

Pp. 383–391. For the simplicity of the group H' in the excluded case of modulus 2, see the report in the *Bulletin*, November, 1902, of the Ninth Summer Meeting of the Society at Evanston.

O. Stolz: *Zur Erklärung der Bogenlänge* . . .

P. 31, l. 17. For $\sum_r f_r d_r$ read $\sum_r f_r \delta_r$.

P. 35, l. 13. " κ " Δ.

L. E. Dickson: *The groups of Steiner in problems of contact*.

P. 44, l. 22. For $(00x_2y_2x_3y_3 \cdots)$ read $(00x_2y_2x_3y_3 \cdots)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use