does not form an exception. The existence of G_8 when $p > 3$ may be proved in exactly the same manner as when $p = 3$. Each of the five groups G_1, G_3, G_5, G_7, G_8 is conformal with the abelian group of type $(m - 3, 1, 1)$, G_2 and G_4 are conformal with the abelian group of type $(m - 3, 2)$ while G_6 is conformal with the one of type $(m - 1, 1)$. Four of these groups (G_1, G_2, G_5, G_6) contain invariant cyclic subgroups of order p^{m-2} while these subgroups are conjugate, in sets of p, in the remaining four groups.

W. F. Osgood: *On a fundamental theorem*.

P. 278, l. 5. After point *insert* and no two curves corresponding to two distinct values of a will intersect each other.

E. J. Wilczynski: *Geometry of a simultaneous system*.

P. 359, l. 10 up. *For* form $y = \lambda \eta, z = \mu \zeta$ *read* form (2).

L. E. Dickson: *Theory of linear groups in an arbitrary field*.

P. 370, l. 5. *For* $T_{s-1} \cdots T_{3-1}$ *read* $T_{s-1} \cdots T_{3-1}$.

P. 372, l. 4 up. *In* $A'_{13}: Y'_{12} = - Y'_{23}$, " Y'_{23}.

P. 377, l. 15. *For* $\Sigma s'$ " $\Sigma s'$.

P. 384, l. 9. " $Y_{13} \eta_3$ " $Y_{12} \eta_3$.

P. 388, l. 15. " subscript $- \lambda \nu^{-1}$ " $- \lambda \nu$.

P. 388, l. 8 up. " $p^9 \Omega_1$ " $(p^9 - 1) \Omega_1$.

P. 390, l. 7 up. " ξ_1 " η_1.

Pp. 383–391. For the simplicity of the group H' in the excluded case of modulus 2, see the report in the *Bulletin*, November, 1902, of the Ninth Summer Meeting of the Society at Evanston.

O. Stolz: *Zur Erklärung der Bogenlänge*.

P. 31, l. 17. *For* $\sum f_r d_r$ *read* $\sum f_r \delta_r$.

P. 35, l. 13. " κ " Δ.

L. E. Dickson: *The groups of Steiner in problems of contact*.

P. 44, l. 22. *For* $(00 x_2 y_2 x_3 y_3 \cdots)$ *read* $(00 x_2 y_2 x_3 y_3 \cdots)$.