does not form an exception. The existence of \(G_8 \) when \(p > 3 \) may be proved in exactly the same manner as when \(p = 3 \). Each of the five groups \(G_1, G_3, G_5, G_7, G_8 \) is conformal with the abelian group of type \((m - 3, 1, 1)\), \(G_2 \) and \(G_4 \) are conformal with the abelian group of type \((m - 3, 2)\) while \(G_6 \) is conformal with the one of type \((m - 1, 1)\). Four of these groups \((G_1, G_2, G_5, G_6)\) contain invariant cyclic subgroups of order \(p^{m-2} \) while these subgroups are conjugate, in sets of \(p \), in the remaining four groups.

W. F. Osgood: *On a fundamental theorem* . . .

P. 278, l. 5. *After point insert* and no two curves corresponding to two distinct values of \(a \) will intersect each other.

E. J. Wilczynski: *Geometry of a simultaneous system* . . .

P. 359, l. 10 up. *For form* \(y = \lambda \eta, z = \mu \xi \) *read form* (2).

L. E. Dickson: *Theory of linear groups in an arbitrary field.*

P. 370, l. 5. *For* \(T_{s,-1} \cdots T_{3,-1} \) *read* \(T_{2,-1} \cdots T_{s,-1} \).

P. 372, l. 4 up. *In* \(A_{13}': Y_{12}' = - Y_{23}' \), " \(Y_{23}' \).

P. 377, l. 15. *For* \(\Sigma s' \) " \(\Sigma s' \).

P. 384, l. 9. " + \(Y_{12}\eta_3 \), " + \(Y_{12}\eta_3 \).

P. 388, l. 15. " subscript \(- \lambda \nu^{-1} \), " \(- \lambda \nu \).

P. 388, l. 8 up. " \(p^{6n}\Omega_1 \), " \((p^{6n} - 1)\Omega_1 \).

P. 390, l. 7 up. " \(\xi_1 \), " \(\eta_1 \).

Pp. 383–391. For the simplicity of the group \(H' \) in the excluded case of modulus 2, see the report in the *Bulletin*, November, 1902, of the Ninth Summer Meeting of the Society at Evanston.

O. Stolz: *Zur Erklärung der Bogenlänge* . . .

P. 31, l. 17. *For* \(\Sigma r f_r d_r \) *read* \(\Sigma r f_r \delta_r \).

P. 35, l. 13. " \(\kappa \) " \(\Delta \).

L. E. Dickson: *The groups of Steiner in problems of contact.*

P. 44, l. 22. *For* \((00 x_2 y_2 x_3 y_3 \cdots) \) *read* \((00 x_2 y_2 x_3 y_3 \cdots) \).