C. N. Haskins: *On the invariants*

P. 73, (2). \[\frac{\partial \xi_n}{\partial x_k} \quad \text{read} \quad \frac{\partial \xi_r}{\partial x_k}. \]

P. 75, (10). " \[a_{ik} \xi_r \quad \text{read} \quad a_{ik} \xi_r. \]

P. 77, (1). " \[a_{kr} \eta_{i_1 ... i_{n'+1}} \quad \text{read} \quad a_{kr} \eta_{i_1 ... i_{n'+1}}. \]

P. 77, (2). " \[a_{kr} \eta_{i_1 ... i_{n'+1}} \quad \text{read} \quad a_{kr} \eta_{i_1 ... i_{n'+1}}. \]

P. 80. In equation (1) the left member is \((\lambda, \mu, \nu \rho) \).

P. 82, V. For \(\xi_n \) read \(\xi_r \).

P. 83, (9). " \[\xi_n \quad \text{read} \quad 0 \xi_n. \]

P. 86. The numerator of the fraction in the last line is \[|C_{11}C_{22}C_{33}|. \]

\[
\begin{vmatrix}
 a_{12} & 2Z & 3Z_1 & 2Z_2 \\
 a_{22} & 0 & z_2 & 0 \\
 a_{11} & 0 & 0 & z_1 \\
 a_{21} & 2Z & 2Z_1 & 3Z_2 \\
\end{vmatrix}
\]

P. 87. \[\frac{\partial \xi_n}{\partial x_k} \quad \text{read} \quad \frac{\partial \xi_r}{\partial x_k}. \]

E. B. Van Vleck: *A determination of the number*

P. 130, l. 16. This line should be \[E \left(\frac{X+2}{2} \right) + E \left(\frac{Y+2}{2} \right) - 2. \]

P. 130, l. 17. \[\text{For } (22) \quad \text{read } (21). \]

P. 130, l. 10 up. " \[\lambda - \lambda_i - \lambda_j + 1 \quad \text{read} \quad \lambda_i + \lambda_j > \lambda_j + 1. \]

E. H. Moore: *On the projective axioms of geometry.*

P. 142–158. *In Hilbert's system I, II the axiom I4 is not redundant.* The error in my proof of the dependence of I4 lies in the omission of a citation of I4 in proof of the second statement of ll. 21–24, p. 143. That statement, call it I4*, is in effect: If two planes have their respective sets of incident points identical, they are themselves identical. The axiom I4 does depend upon I1–3, 5, 7, II 1–3, 5 and I4*. — E. H. M.

P. 143, l. 22. Insert the references (I2; I4). — The connection is in a 1-1 way.

P. 146, l. 6 up. *Omit indeed.*

P. 147, l. 4. *For thus read hence.*

P. 155, l. 13. " \[\alpha \quad \text{read} \quad \alpha'. \]

P. 156, l. 15. " \[k\text{-space} \quad \text{read} \quad (k - 1)\text{-space}. \]