
ORTHOCENTRIC PROPERTIES  OF THE PLANE n-LINE*

BY

F.   MORLEY

In continuation of a memoir in these Transactions (vol. 1, p. 97) I con-

sider the problem :

To find for n lines of a plane natural metrical analogues of the elementary

facts that the perpendiculars of 3 lines meet at a point (the orthocenter of the

3-line) and that the orthocenters of the 3-lines contained in a 4-line lie on a line.

I apply first to the special case of a 4-line the treatment sketched in § 7 of

the memoir cited ; this affords suggestions for the general case.

§ 1.   The Deltoid.

To discuss with the minimum of trouble the metrical theory of a 4-line we

should take, according to our purpose, the lines as tangents either of a parabola

or of a hypocycloid of class three. We want here the latter curve. As it is to

most geometers an incidental stationary thing and not a weapon, I will treat

it ab initio. And as it is at least as good as other curves which have a given

name I will call it a deltoid. It is hardly necessary to remark that it is the

metrically normal form of the general rational plane curve of class three with

isolated double line.

Denote by t a turn or a complex number of absolute value 1 ; and think of t

as a point on the unit circle. We consider three points tx, t2, t3 on the circle

subject to the condition

(1) 8Í»Í1Í2Í$=1.

With this triad we associate a point x by the equation

(2) x=tx4-t24-t3 = sx,

which carries with it the conjugate equation

y = l/tx + l/t2 + l/t3 = t2t3 + ««,<, + txt2= s2.

We have from (1) and (2)

(3) x=tx4-t2-rl/txt2.

* Presented to the Society at the Evanston meeting, September 2-3, 1902. Received for pub-

lication September 3, 1902.
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Herein let tx be fixed, t2 variable. Since x = t + 1/í is that simplest of all

hypocycloids, the segment of a line, so also is (3) the segment of a line, of con-

stant length 4, with center tx and ends where

or

or

When tx varies, the deltoid is described by the motion of this variable segment ;

the ends move on the curve, and the segment touches the curve. And any point

inside the curve is given by (3) as the intersection of 2 segments ; the points of

the curve itself are given when the segments are brought to coincidence, that is, are

(4) x=2tA-l/t2.

This equation expresses that while a point 2i is describing a circle of radius

2 another point x moves round it with an angular velocity opposite in sense

and twice as great ; thus the cycloidal nature of the curve is apparent.

A point of the curve and also a line of the curve is named by its parameter

t;  thus the point t of the curve is given by (4), and the line t from (1) and (2) by

(5) xt2 - yt = ? - 1.

x and y being always conjugate coordinates.

Now two lines tx and t2 meet at

xx = tx + t2A-l/txt2.

Symmetrize this equation for 3 lines of the curve by writing it

(6) x = sx -tt+ t3/s3.

Omitting the suffix of t3 we have the map-equation of the circumcircle. Hence :

The circumcenter of the 3-line is sx, and the circumradius is  |1 — l/s3\ or

|l-*s|-
The mean point of

tx + t2 + l/tx t2        and        tx A- t3 4- l/tx t3

is

m = i[sxA-txA-(sx-tx)/s3-].

Hence the center of the circle which bisects the sides, the Feuerbach or nine-

point circle, is

(7) c-*(*! + *A)-

Dtx = 0,

txt\ = l,

x= tx±2/Vtx.
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The perpendicular from tx + t2 + l/txt2 on the line t3 is

««» + y- hih + h+ *lhh) + 1/ti + 1/t2 4-txt2 = s24- t3sjs3.

Hence the orthocenter is

P = Sl/S3>

as could of course be inferred from the fact that

orthocenter + circumcenter = 2 x Feuerbach center.

Since then \p | = | sx | we have :

Theorem 1. The center of a deltoid, of which three lines are given, is

equidistant from the circumcenter and orthocenter of the %-line.

The centre of the deltoid which touches 4 lines is thus determined as the

intersection of 4 lines, one for each of 3 of the given 4.

The Feuerbach center for 3 of 4 lines is given by

2c = (Sl--iJ(l + -i4/s4),        (sfor4),

sx and s3 being replaced in (7) by symmetric functions of tx, t2, t3, té.    Thus

the 4 such centers are included in

2x = (sx- t)(l4-t/Si),
whose conjugate is

2y = (sJSi-l/t)(l4-sJt) = (sJt-sJt*)(l4-t/s4).
But

t2 — Sxt 4- S2 — Sjt 4- Sjf mm 0 .

Therefore
2(tx4-y) = s2(l4-t/Si),

a line through is2fsi, perpendicular to the line t of the curve.    Hence

Theorem 2. If from the Feuerbach center of any 3 of 4 lines a perpen-

dicular be drawn to the remaining line, the 4 perpendiculars meet at a point,

namely is2/si.

§ 2. Extension to the n-line.

1 employ now the notation of § 2 of the memoir cited, namely I write a

line la in the form

xta4-y = xata = ya.

Denote the characteristic constants by aa,
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and their conjugates by ba, so that

^=(-)""1*Ä+l-a

where sn = txt2 • • • tn, and in general sa = 2 txt2 • ■ • ta for n t's.

The circumcenter of a 3-line is ax.    The mean point of the joins of lx, l2 and

lx, l3 is given by

2m —   x^x   -L.   x¿"i   _l   Xl*1   _).    x^3

tx — t2     h~ *i      ^i — h      h~~ ti

= xxtxj2tx-sxA-tx)     x2t2j2t2-sxA-tx)     x3t3j2t3-sxA-tx)

~ (h~t,)(ti-h)    (t2-ti)ih-h)    (<>-O0»-<*)'

and therefore the nine-point circle is

(8) 2m=2ax —sxa2A-a2t,

and its center is
2c = 2a, — sxa2.

Hence the orthocenter is
(9) p = 2c-ax = ax-sxa2.

The line about the points ax and p (which is the locus of centers of inscribed

deltoids) is, when t is any turn,

(10) x — a, + sxa2 = ix — ax) r.

This for 3 of 4 lines is

x — a, + ta2 A- (s, — 0(a2 — ta.) =(»! — «, + ta2)r,

or x — ax + sxa2 — i(s, — t)a3 = [x — a, + sxa2 — (s, — £)a2] t.

Now since for 4 lines a3/a2 is a turn we can equate ta3 to a2r; that is, whatever

turn t may be, the line passes through the point

(11) px =ax-sx a ■r

This is then the center of the inscribed deltoid of the 4-line.

For 4 of 5 lines this point is given by

p = a, — ta2— (sx — t)(a2— ta3) = a, — sxa2 + t(sx — t)a3,

or the conjugate equation

i=^-{^-- t{X-t)^=s^-s^+(jyi)a^

But for 5 things

f — t2sx + ts2 — ts3 A- sjt — sjt2 = 0.
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Therefore

(12) tip - a, + sxa2) - iq - s6a5 + staj = (is2 - s3)a3,

that is, the line joining the p of 4 lines to the point a, — sxa24- s2a3 is per-

pendicular to the remaining line ; or

Theorem 3. If from the center of the inscribed deltoid of 4 of 5 lines a

perpendicular be drawn to the line left out, the 5 perpendiculars meet at a

point ; namely the point

p2=ax-sxa24-s2a3.

Call this point the first orthocenter of the 5-line.

For 5 of 6 lines this point is

x= ax — ta2 — (s, — t)ia2 — ta3) 4- (s2— tsx + t2)ia3 — taj

= a, — sxa2 + s2a3— i(s2 — tsx + t2)a4

= P2-tis2~tsiA- t2)at,

or, if the conjugates be written,

y=92+isJt-sJt2A-sJt3)a3.

But for 6 things

t? -t2sxA- ts2- s34- sjt- sjt2 A- sjt3 = 0.

Hence

(is) x-^_y^ = _hi

that is to say

Theorem 4. The first orthocenter s of the 5-lines included in a 6-line lie on

a line.

The argument is clearly general, so that if the point p2 = ax — s, a2 + s2 a3 be

constructed for a 6-line, the perpendiculars from such point for 6 of 7 lines on

the line left out meet at a point, and for 7 of 8 lines these points lie on a line ;

and so on. Briefly, we have found an orthocenter for an odd number of lines, a

directrix for an even number.

§ 3.   Construction of a series of points.

The points to which attention is thus directed belong, for a given «-line, to

the series

(14)        Po=an       Pi= ax — sxa2,       p2 = a, - sxa2 + s2a3, etc.

Their construction is merely a matter of centroids, or centers of gravity. For

we regard as known in an n-line :
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ax, the center of the center-circle,

ax — tia2, the n such points of the (n — 1 )-lines,

„ J such points of the (n — 2)-lines,

and taking the centroid of each set we have o^y,,^,,, where

ngx = nat — sxa2,

(2)ff2= (2)ai~^~1)si0!2 + s2a3'

(s)9i=(s)ai~(     2    )sia2+(n-2)s2a3-s3at,

(15)

whence the p's are easily constructed. It will be noticed that the last equations

cease to be independent of the origin when an itself makes its appearance; thus

gn_x is the centroid of the points xi, the reflexions of the origin in the n lines.

Hence also p x is a point dependent on the origin, not a point of the n-line

itself.

But a more vivid construction is indicated by the process by which px for a

4-line was deduced (p. 4) from ax and px for a 3-line. It will be clear on con-

structing px for a 5-line.

We write as before (eq. 10), for a 4-line,

x—px = (x — ax)z,

and extend this to a 5-line, observing that px for 4 is px + t (sx — t ) a3 for 5.

Thus the extended equation is

x-px-t(sx-t)a3=(x-ax4-ta2)z= {x -px- (sx- t)a2}z.

If za2 = ta3, we have x = px. Let then \z\ = \a3/a2\. That is, if we divide

the known pointspx and ax of 4 of 5 lines in the ratio | a3ja2\, where the con-

stants a. refer to the 5-line, the 5 such circles meet at the point,

p1m ax-sxa2.

And px being now known for a 5-line, we have a similar statement for a 6-line,

whence px is known in general. But again we know p: and p2 for a 5-line.

Write for n — 1 lines

x-p2=(x-px)z,
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and extend this.    We have for an 7»line,

X — P2 A- í(«2 ~~ ÍS1 + t2)a4=  {X — Pi — fiSl — t)a3}Z

= [x -p2 A- («, - tsx + t2)a3}z,

whence, as before, the point p2 of the %-line has its distances from the points

p2 and px of any included n — 1 lines in the fixed ratio | aija3 [. And so in

general :

Theorem 5. The point pa of an n-line has its distance from the points

pa and pa_x of an included in — l)-line in the fixed ratio | aa+2/aa+x \.

Since ba = (—)n~1sn+x_a, this fixed ratio is unity when

a+2 + a + l = 7i + l,
or

a 4-1 = in,

that is, in a 2w-line the point pn_x is equidistant from the points pn_x and pn_2

of any included ( 2ti — 1 )-line.

Regarding the lengths | aa | as known, we have in Theorem 5 a construction for

the points pa for 7i-lines, when the points pa for (?i — l)-lines are known.

§ 4.   The curve A2""1.

The peculiar appropriateness of the deltoid for the metrical theory of four

lines makes it desirable to have an analogous curve for 2?i-lines. Such a

curve is

(-)"(xf- 7/Í»-1) = ¿»-' - 1 - (S,*2-2 - S2n_2t)

(16) A----A-(-T(sn_2t^-sn+xt"-2),

where ca and c2n_x_a are conjugate. This is a curve A2"-1 of class 2n — 1,

order 2n, with a line equation of the type

(17) f"fjn = form in (f, y of order 2n — 1.

For clearness I will take the case n = 3, next to the case n = 2 of § 1 ; the

generalizations are immediate.

Any 6 lines are lines of a curve A5,

(18) -(x?-y?) = t!i-l-(sxti-stt).

The map-equation of the curve is

(19) _x=3i2 + 2t-3-(2sxt-sit-2).

Thus the curve is derived by addition from 2 concentric cycloids.
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So A2"-1 is derived by addition from n — 1 concentric cycloids ; those points

being added at which the tangents are parallel.

Let the common center of the cycloids be called the center of A2n_1.

The cusps of A5 are given from (19) by

6(t-t-*)-2(sx-Sit-*) = 0,
or

S(t5-l) = sxti-sit.

Hence the cusp-tangents are such that

(20) o(xf-yt2) = 2(V4-s4i),

that is :

There are 5 cusp-tangents of A5; they touch a concentric A3.    And so

Theorem 6.    There are 2n — 1 cusp-tangents of A2"-1 ; they touch a concen-

tric A2""3.

Consider the common lines of A5 and any A3,

xt2 -yt=a?4- ßt2-yt-8.

There are 5 common lines, and they are given by

(21) 1? - 1 - (cxtl - ej) + i«+ ßt2 - it - 8) = 0 .

Hence the center of the A3 is

ß=T.tlt2=S2

where

s5=l,

that is, the center of the deltoid touching 4 lines of A5 is

(22) x = s2 + s1/s4        ( s for 4 ).

The perpendicular on a fifth line of A5 is

xt 4- y = t(s2 4- sfsf) + s2/si 4-s3=s34- s2t/s5        (s for 5 ).

Hence the first orthocenter of 5 lines is s2/s5.

For 5 of 6 lines this point is

x=(t2-tsx4- s2)t/s6

or
y = hlt'-sjt2 + sjt,

whence the 6 first orthocenters lie on the line

(23) s6x + y=s3.
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The line of A3 perpendicular to a fifth line of A5 is

xt2 + yt + at3 — ßt2 — yt 4- 8 = 0,

where

cx — a=sx,        ß=s2,        y=s3,        et — Smmsá,        l = s.,;

or is

xt2 + yt + (c, — sx — l/sx)f — (s2 + sjs^t2 — (s3 + s2¡sf)t

4-cl — si—s3/si=0        (a for 4),
or

(24) xt2 4-yt4-cxt' — s2t2 — si4-ci—s3t/s5 — sxt:i/s5=0 (a for 5).

That is :

Theorem 7. If of the deltoid touching any 4 of 5 lines we draw the line

perpendicular to the omitted line, the 5 perpendiculars touch a deltoid.

The center of this deltoid is s2. The first orthocenter was s2/s5. These are

strokes of equal size.    Hence :

Theorem 8. The locus of centers of curves A5 of .which 5 lines are given

is a line.    And so for A2"-1.

The curve A2"-1 does then for 2n lines precisely what the deltoid A3 does for

4 lines ; it replaces Clifford's n-fold parabola for metrical purposes. We have

proved by its means the theorems of § 2 over again with additions ; in par-

ticular we have assigned a meaning to the point px of a 5-line or pn_2 of a

( 2n — 1 )-line, for this is readily identified as the point s2 of 5 lines of A5 or

sB_j of 2n — 1 lines of A2"-1. But at present I regard the use of this curve

as more limited than the method of the a's, to which I now return.

§5.   The second circle of an n-line.

A curve of order n, whose highest terms in conjugate coordinates are

txn4-ya,

has its asymptotes apolar to the absolute points IJ, that is, these asymptotes

form an equiangular polygon. Such a curve depends on % n(n4r 1) 4- 1 con-

stants, and therefore a pencil can be drawn through i n ( ?i + 1 ) points in

general, and the pencil determines n2 — i n(n + 1), or in(n — 1) other points.

In the pencil are the imaginary curves

x" 4- an"-1 + • • • + a'y"-1 + • • • = 0

and

y" 4- by"-1 4- ■ ■ ■ 4- b'y"-1 ..- = 0,
the pencil itself is

(25) tnn 4-y" 4-(ta 4- b')x"~1 + ••• = 0,
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the polar line of lis
ntx + ta + 6' = 0,

and therefore the polar lines of /and Jmeet on a circle.*

Let now the H(a+ 1 ) points be the joins of n + 1 lines. We shall call

the circle the second circle of the ( n + 1 )-line ; the first circle being the center-

circle (1. c, p. 99).

For a 3-line the second circle is the Feuerbach circle.

Now calculate the center and radius of the second circle of the 7»line

xtaA-y = xJa = ya (o=l, •••,»).

The pencil is

E——— = o.
« nt« A- y - ya

The highest powers arise from

a^A-y'

and are to be txn~l 4- yn~x, so that, if y/x = X,

(26) 7Í+\»-1 = £,4,(í2+-V)(Í3 + X)...(í„+\  ;

whence

«-£^iV-«J

t + (_ txy-1 = Axit2-tx)it3-tx)-.-itn- tx).

Operating with Dn~2 on

X Axixt2 + y-y2)... (xtn + y-yn),

we have for the polar line of /

(n— l)tx= ^Axt2t3---tn(x24- x3A--r- »„),

or if

(n-l)tx-nta TV.        {*+(-P""^ "*■      -(n     l)tx-ntgn_x     ?.ni(h-tl)(ti-tJ...(K-tl)\

or since

i:a;i(,2_,ii)2.'::(\_,i)=«i-^+---+(-rlgn-i«n=A-i>

the second circle is

(27) (n-l)x = ngn_x-pn_1-sa2/t.

*Cf. J. H. Grace, Proceedings London Mathematical Society, vol. 33 (1900),p. 194.
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Hence its radius is

71-1
x- e>'     n~=l I a21 ' or :

Theorem 9.    The radius of the second circle of an n-line is l/(n—l) of

the radius of the first circle.

Also its center is given by

(n-l)c = ngn_x-pn_x,

or explicitly by

(28) (n-l)c=(n-l)ax-(n- 2)sxa2 +•■■ -(-)*«„-A-r

Omitting now the Tith line we have for the second center of the rest

(n - 2)c' = (n -l)g'n_2 -X-a»

whence (ra - l)c - (»- 2)c' - ¡cB - (p^x -p'n_2).

Here

p'„_2= ax- ta2- («,- t)(a2- ta3) 4- ■■■

+ {r-2 - Slr-3 +••• + (- )"*„_,} (an_x - tan)

= Pn-2 - «. {t"-1 - «i«"-2 +•*• + ( - )"<«„_,}

=a-i - ». {í"-1 - si*"-2+•••-(-r*„-i}

= A-i + (-)"a.«./«

= i)„-i-ei/'i-

Therefore
(n_ 2)c' = (n - l)c - xn 4- bjtn.

But the reflexion r' of the first center ax in the omitted line is xn — 6j/íb.

Hence

(29) (7i-2)c' = (7i-l)c-r',

whence it follows at once that :

Theorem 10. If from the second center of each (n — 1 )-line of an n-line

a perpendicular be drawn to the omitted line, these perpendiculars meet at a

point; the point is the external center of similitude of the first and second

circles of the n-line.

The point A so found is given by

(n — 2)h = (n — l)c — ax = (n — 2)(ax — sxa2) + (n — 3)s2a3

(30) -(»-4)V*«+'--(-)*WW
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Whereas the orthocenter of § 2 applied only to an odd number of lines the

present one applies to any number. We have then for an odd Ti-line two solu-

tions of our problem, except when n = 3, in which case the points h and p

coincide.

But when we have two orthocenters, we have a whole line of orthocenters,

since evidently a perpendicular to one of the n lines, dividing the join of the

two known points of the remaining n — 1-lines in a fixed ratio, will divide the

join of the two orthocenters in the same fixed ratio.

Thus we have found, for an even number of lines, one orthocenter ; for an

odd number of lines, a line of orthocenters ; for an even number of lines,

one directrix.

Knowlton, P. Q.,

July, 1902.


