
DEFINITIONS OF A LINEAR  ASSOCIATIVE ALGEBRA  BY

INDEPENDENT POSTULATES*

BY

LEONARD  EUGENE  DICKSON

Introduction.

The term linear associative algebra, introduced by Benjamin Peirce, has

the same significance as the term system of (higher) complex numbers, f In

the usual theory of complex numbers, the coordinates are either real numbers

or else ordinary complex quantities. To avoid the resulting double phraseology

and to attain an evident generalization of the theory, I shall here consider sys-

tems of complex numbers whose coordinates belong to an arbitrary field F.

I first give the usual definition by means of a multiplication table for the n

units of the system. It employs three postulates, shown to be independent,

relating to 7i3 elements of the field F.

The second definition is of abstract character. It employs four independent

postulates which completely define a system of complex numbers.

The first definition may also be presented in the abstract form used for the

second, namely, without the explicit use of units. The second definition may

also be presented by means of units. Even aside from the difference in the

form of their presentation, the two definitions are essentially different.

First Definition of a System of Complex Xumbers.

Consider n quantities ex, e2, •■ -,en linearly independent with respect to the

field F and having a multiplication-table of the form

n

(1) ^»3^-y^e, (•'.* = !, 2, •-,«),
s=l

where each yiki belongs to F.    If ax, ■ ■ -, an belong to F, the expression

a = axex + a2e2 4- ■ ■ ■ + anen

* Presented to the Society at the Evanston meeting September 2, 1902. Received for publi-

cation September 5, 1902.

t A bibliography of the subject is given by Study, Encyklopädie der Mathematischen

Wissenschaften,  vol. 1, pp. 159-183.    Cf. Lie-Scheffers, Conlinuierliche Gruppen, ch. 21.
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is called a complex number with the coordinates a,, a2, ■ • -, an.    Let

6 = 6,e, + 62e2+ ■ ■ ■ A-bnen

be a second complex number.    Addition and subtraction are defined thus :

a±6 = (a,±6,)e,+ ■ • • + (an± 6Jen.

In accordance with the distributive law, multiplication is defined thus :

i,...,»

(2) ab=   yj  afb^e^.

It follows from (1) that
n 1, ... ,n

(3) a& = Z«.e., «. ■   E   7a.aA-
«=1 Í,*

Whatever be the n3 marks yila of F, we have defined unambiguously certain

operations called addition, subtraction and multiplication, which, when applied

to any complex numbers with coordinates in F, lead uniquely to complex num-

bers with coordinates in F. It remains to impose certain conditions on the

yika such that there will result a system of complex numbers, viz., one for which

the associative law for multiplication holds and for which division (as defined

below) may in general be performed uniquely.

In view of (2), the associative law holds always if, and only if,

(4) («i«*)«!-«^«*«!) (i,fc,Z = l, 2, ••-,»).

In view of (1) and the linear independence of e,, • • -, en, these relations give

n n

(5) l7il37,1,= l7iiJi,(, (*,*,!, 1 = 1, •••,»).
«=i i-i

In order that, for a general complex number a and an arbitrary complex

number 6, it shall be possible to determine uniquely a complex number x such

that ax = 6, the condition is that

shall not vanish for every ax, ■ ■ •, an.

The proof follows from formula? analogous to (3).

Likewise, in order that it shall be possible to determine uniquely a complex

number y such that ya = b, the condition is that

(6) A =

(7) A' = shall not vanish for every a,, • ■ •, an.
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Every system of complex numbers with respect to afield F defines ns marks

yiki of F satisfying the conditions (5), (6), (7). Inversely, such a set of marks

yiks defines a system of complex numbers with respect to F.

Independence of the Conditions (5), (6), (7).

Following the customary method, we exhibit for j = 5, 6, 7, a set S. of n3

marks yiks of F for which the jth condition fails while the remaining two con-

ditions are satisfied.    It suffices to take n = 2, whence

A  =
7m«i + 7211«2   7„2a,+7212«2

7m«i + 722i«2   7,22«! + 7222«2

,   A' =
7m«! + 7121 «2    7112«! + 7,22 02

72n «, + 7221 «2   7212 », + 7222 «2

s,
7m = 1, 7„2=0, 7,2,= 0, Y,22=l,

%n=1,        72,2=0, 722, = 1, 7222=0.*

Then (5) fails for i = 2, k = 1, I = 2, t = 1, since

¿—i 72is 7,2, = u , ¿_i 7i2« 72s, = -t •

But (6) and (7) hold, since

I ai + a2    0
A. s = ax(ax4-a2), A' m

ax 4- a2    0
= —a2(ax4- a2).

S-.

A  =

7„, = 1» 7„2=0,

72„ = 0 . 72,2 = 1.

= 0,        A'=
a

7m —       * » 7i:22 — ",

722i = u, 7222 =       ■*■ •

0

0

a, — an

= («i-«2)2

We may verify directly that conditions (5) are satisfied ; or we may verify rela-

tions (4), employing relations (1) which here become

ei ei "" ei ' ei e2 == — ei » e2 ei= e2> e2 e2 = — e2 •

Sr
7m = 1. 7,12=°» 7,21 =0, yl22--

72„ =      J-)      T2i2 = "» 722, == ", 7222 :

1,

* When F does not have modulus 2, we may take for S¿ the set

7nr-=l>    Tm—0,    7m = 0,    y122 = —1,    y211 = 0,    *„,= —1,    ym= — 1,    y232 = 0.

Then A„ = A'a = —(a* + a^ ) ; while (5) fails for / = 2, k = 2, 1 = 1, t = l, since —1,+ + 1.
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Ao= \ = (a.-a1)*,        A' m =0.o a Viz/7 a

0 ax — a21 — ax    — a2

That conditions (5) are satisfied follows from the fact that the set S7 can be

derived from the set S6 by interchanging yikt with ykia.

Second Definition of a System of Complex Xumbers.

We consider a system of elements A = ( a,, a2, • ■ •, an ) each uniquely defined

by n marks of the field F together with their sequence. The marks a,, • • • an

are called the coordinates of A. The element (0, 0, •••, 0) is called zero and

designated 0.

Addition of elements is defined thus :

(8) A4- B=(ax+bx,a2+b2, •••,a„+ 6n).

It   follows   that  there  is  an  element  D = (ax — 6,, •••, an — 6n)  such  that

Z>+ B=A.
Consider a second rule of combination of the elements having the prop-

erties : *

1. For any two elements A and B of the system, A ■ B is an element of the

system whose coordinates are bilinear functions of the coordinates of A and B,

with fixed coefficients belonging to F.

2. (A-B)C=A(BC), if AB, BC, (A- B)- C, A(B- C)
belong to the system.

3. There exists in the system an element / such that AI=A for every

element A of the system.

4. There exists in the system at least one element A such that A ■ Z + 0 for

any element Z + 0.

That any system of elements given by the second definition is a system of

complex numbers according to the usual (first) definition is next shown, f From

1- and (8) follows the distributive law :

(9) A-(B4- C) = (A-B)4-(AC).

For any element I satisfying 3,1- B = B for every element B.

In proof, let A be one of the elements satisfying 4, and let B' be such that

B + B' = 0 (see above).    Then by 2

*Note that 3 assumes the existence of a right-hand identity element. Postulate 4 is milder

than the assumption of a left-hand identity 1', while from the existence of 1' would follow 4,

A being taken as V.

f The inverse is true. That a system of complex numbers contains an identity element (so

that 3 and 4 follow) is shown in Lie-Scheffers, p. 614.
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A(IB) = (AI)B = AB.

Hence, by (9) applied twice,

A-[(IB)4-R'] =(AB) + (A-B') = A-(B + B') = A0.

By 1, A • 0 = 0.    Hence by 4, (/■ B) + B' = 0, so that I B = B.

There is an unique element I satisfying 3.

For, let I be the given element and /' a second element, each satisfying 3.

Then I' ■ I = I' by 3. By the preceding theorem, I' ■ B = B for every B,

whence I' ■ I = I.     It follows that /' = /.

There is an unique element I such that I B = B for every B.

For, let Ix be one such element and let I be the unique element satisfying 3.

Then Ix- B = B gives IXI= I, while 3 gives Ix-1 = Ix.    Hence Ix = I.

From the three preceding results it follows that there is an unique element

/ such that A ■ 1= I A = A for every A.

To pass to the form of representation used in the first.definition, we make

A = (ax, a2, • • •, an) correspond to a = axex + a2e2 + • • • + anen. In view of

1, there exist constant marks 7ttJ.of F such that relation (3) holds and, as

special cases, relations (1). Condition 2 thus leads to relations (5). Since

there is an unique solution * X=I of A-X=A, where A satisfies 4, the

determinant Ao does not vanish for every ax, • • ■, an. Since there is an

unique solution X = I of X- A = A, where A is such that ZA + 0 if Z =f= 0,

A^ does not vanish for every ax, ■ • -, an. Since conditions (5), (6), and (7) are

satisfied, the system of elements forms a system of complex numbers.

Independence of the Postulates 1,2,3,4.

For i = 1, 2, 3, 4, we exhibit a system "2. of elements for which the ith

postulate fails, while the remaining three postulates hold.

2r Take AB = A. Or take A B = A + B with 7=0 and A = Q
in 4.

22. Take n = 2, and for A ■ B take the law of combination

(ax, a2)(ax, a2) = (axax4r axa24- a2a2, a2ax).

Then 3 is satisfied for / = ( 1, 0 ), and 4 for A = ( 0, 1 ) since

(0, l)(zx,z2) = (z2,zx).

But 2 fails for A = (0, 1), B = (1, 0), C= (0, 1).

23. We employ the system S7.    Hence A ■ B is given by

*For, by the proof of the first theorem, X■ B = B for every B, whence X= /.
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(a,, a2)(6,, 62) = (a,6, - a26,, axb2 - a2b2).

Hence 1 and 2 hold.   Since (1,0)(zx, z2) = (zx, z2), 4 holds.   To show that 3

fails, we note that A ■ B = A requires

6,(a, — a2) = a,,    62(a, — a%) = a2,

so that 6, and 62 are not independent of ax and a2.

2,t. We employ the system S6.    Hence A ■ B is given by

(ax, a2)(bx, 62) = (a,6,-a,62, a26,-a262).

Hence 1 and 2 hold.    Also 3 holds for / = ( 1, 0 ).    But 4 fails since

(a„a2)(l,l) = (0,0).

The TJkiveesity of Chicago,

August, 1902.


