
TWO  DEFINITIONS OF AN  ABELIAN  GROUP BY SETS  OF

INDEPENDENT POSTULATES*

BY

EDWARD  V. HUNTINGTON

The following definitions of an Abelian (commutative) group are suggested

immediately by the writer's definitions of a general group published in the

Bulletin of the American Mathematical Society, ser. 2, vol. 8

(1901-1902), pp. 296-300, 388-391.f

§ 1.   First definition :  by three postulates.

A set of elements in which a rule of combination o is so defined as to sat-

isfy the following three postulates shall be called an Abelian group with respect

to o:

1) aob = boa, whenever a, 6 and boa belong to the set.

2) (aob)oc = ao(boc), whenever a, 6, c, ao6, 6oc and ao(boc)

belong to the set.

3) For every two elements a and b(a = 6 or a + 6) there is an element x

in the set such that aox = b.

If we wish to distinguish between finite and infinite groups we may add a

fourth postulate, either

a)  The set contains n elements ; or

6)  The set is infinite.

Familiar examples of a finite and an infinite Abelian group are the fol-

lowing :

A) The system of the first n positive integers, with the rule of combination

defined as follows :

a o 6 = a + 6 when        a + 6 = n,

= a + 6 — n        when        a + 6 > n.

B) The system of all integers, positive, negative and zero, with a o 6 = a + 6 ;

or the system of all positive rational numbers, with aob = a x b .

* Presented to the Society October 25, 1902.    Received for publication October 4, 1902.

fCf. E. H. Moobe, Transactions, vol. 3 (1902), pp. 485-492.    Professor Moobe's criti-

cism of " multiple statements " suggested the present form of postulates 1 and 2.
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The following theorems, deduced from postulates 1, 2, 3, show that the pres-

ent definition is equivalent to the definitions usually given.*

Theorem I.    The element x in 3 is uniquely determined by a and 6.

Proof. Suppose aox=b and also a ox' = 6 ; and by 3 take f so that

xo% = x'. Then by hypothesis ao(xo^) = 6; or, by 2, (aox)o£ = b ; or,

6 o | = 6. Now by 3 and 1 take n so that nob — x. Then n o (b o Ç) = x ;

or, by 2, ( v o 6 ) o £ = x ; or, x o *; = x.    Therefore x = ce'.

Corollary.    If a o 6 = a o 6' then 6 = 6'.

Theorem II. There is a peculiar element e in the set, such that 6 o e = 6

ybr every element 6.

Proof. Take any element a and by 3 take e so that a o e = a; the element e

thus determined (Theorem I) is the peculiar element required. For, let 6 be

any other element than a, and by 3 and 1 take x so that x o a = 6. Then

-to(aoe) = 6 ; or, by 2, (xoa)oe = 6 ; or 6oe = 6.

Theorem HI. Whenever a and 6 belong to the set, a ob also belongs to

the set.

Proof. By 3 and 1 there is an element 6' such that b' ob = e and also an

element c such that cob' = a. Then c= a ob. For, by 3 take ß so that

a oß = c and ß' so that ß o ß' = e.    Then

co6' = <z = ao(/3o/3') = (ao/3)o/3' = co/3'

by 2; hence b'=ß'.    Then b'oß=ß'oß=e = b'ob by 1; hence ß=b.

Therefore aob = c.

Independence of postulates 1, 2, 3 and a), when n > 2.

The mutual independence of postulates 1, 2, 3 and a), when 7t *> 2 ,f is shown

by the following systems, each of which satisfies all the other postulates but not

the one for which it is numbered.

(1) The system of the first n positive integers, with aob = b.

(2) The system of the first n positive integers, with the rule of combination

defined as follows :

a o 6 = a 4- b when a + 6 = n,

= a + 6 — n when a + 6 > n ;

except that   aob = 2 when a 4- 6 = n + 1,

and a o 6 = 1 when a+6=2orn + 2.

(3) The system of the first n positive integers, with aob = 1.

(a) Any infinite Abelian group, such as B) above.

*The proofs of these theorems become, of course, much simpler if we confine ourselves to

finite groups.

t When n = 1, postulate 3 is sufficient. When n = 2, postulates 1 and 3 are sufficient and

independent.
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Independence of postulates 1, 2, 3 and 6 ).

Similarly, the independence of postulates 1, 2, 3 and 6) is shown by the

following systems :

[1]  The system of all positive integers, with aob = 6.

[2]   The system of all rational numbers, with aob = (a + 6)/2.

[3]  The system of all positive integers, with aob = 1.

[6]  Any finite Abelian group, such as A ) above.

§ 2.   Second definition : by four postulates.

An Abelian group may be defined also by the following four postulates:

1') aob = boa, whenever a, 6, ao6 and boa all belong to the set.

2') (aob) oc = ao(boc), whenever a,b, c, a ob,b oc, (aob)oc and

ao(b oc) all belong to the set.

3') For every two elements a and 6(a=6orœ + 6) there is an element x'

in the set such that (aox')ob = b.

4') If a and 6 belong to the set, then aob also belongs to the set.

To show that this second definition agrees with the first, we have only to

notice that the truth of 3 follows at once from 2', 3', 4'.    (a; = x'ob.)

Independence of postulates T, 2', 3', Jf and a), when n~> 2.

The independence of these postulates for finite groups, when n > 2 ,* is estab-

lished by the use of the following systems :

(1'), (2'), (3'), (a).    Same as the systems (1), (2), (3), (a) above.

(4') The system of the first n positive integers, with the rule of combination

defined as follows: aoa=l; lo6 = 6; otherwise ao6 = 2, an object not

belonging to the set.

Independence of postulates 1', 2', 3', ¿f and b).

Similarly, the independence of these postulates for infinite groups is shown

by the following systems :

[1'], [2'], [3'], [6].    Same as the systems [1], [2], [3], [6] above.

[4'] The system of all integers except ± 1, with a o b = a + 6.

Harvabd Univebsity, Cambbidge, Mass.,

_ August, 1902.

* When n = 1, postulate 4' is sufficient. When n = 2, postulates 1', 3', 4' are sufficient and

independent.
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Postscript. *

In the course of an article entitled .4 Definition of Abstract Groups,^ which

appeared while the present paper was going through the press, Professor E. H.

Moore takes up my first (three-postulate) definition of a group,

(Hx):(2',9',10'),

and after pointing out that the postulate 2' can be broken up into two compo-

nent statements 2[ and 22, raises the question as to the independence of the four

postulates

(^i):(2;,22,9',l0').

As an answer to this question the following result may be not without inter-

est: I find that either of the postulates 2[ and 22 can be deduced as a theorem

from the remaining three. That is, my first definition ( Hx ) may be replaced

by a new three-postulate definition, say

(H"x): (2'2, 9', 10'),

in which the postulate 22 is "milder" than the postulate 2'.    (The old proofs

of independence hold for (H"x), for both finite and infinite groups.)

The actual deduction of 2[ from 9', 10' and 22 proceeds as follows : "f We have

9') For every two elements a, b there, is an element x such that

aox=b.

10') For every two elements a, b there is an element y such that

yoa= 6.

22 ) If a,b, c are three elements such that the products aob, boc

and a o ( 6 o c ) belong to the set, then (ao6)oc= ao(6oc).

Lemma.    If aob = ao6' (both products belonging to the set), then 6=6'.

Proof.    Let c=ao6=ao6', and by 9' take cc so that 6 o x = 6'.    Then,

by hypothesis, a o (b ox) = c; or, by 22, (ao 6)occ = c; or,coa; = c.    Now

by 10' take y so that yoc= 6.    Then y o (c occ) = 6; or, by 2'2,(yoc)ox=b;

or, 6 o x = 6.    Hence 6 = 6'.

Theorem 2[. If a,b,c are three elements such that the products aob,

boc and (aob)oc belong to the set, then (aob)oc = a o (boc).

Proof.    By 9' take x so that a ox = ( or O 6 ) O c and also z so that 6 o z = x.

Then ao(boz) = (aob)oc.    But  by 22, ao(b oz) = (aob)oz.    There-

fore c = z, by the Lemma.    Hence 6 o c = cc ; or, a*o(6oc) = (ao6)oc.

In like manner we might have deduced 22 from 9', 10' and 2[.

Harvard University,

October 31, 1902.

* Received for publication November 26, 1902.

■■-Transactions, vol. 3 (October, 1902), pp. 485-492.

t In the case of Abelian groups this deduction is not necessary.


