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Introduction.

The fundamental concept involved in the following paper is that of a class

(assemblage, set, Menge, ensemble) in which two rules of combination (operations,

Verknüpfungen), which we shall denote by © are 0, are defined, f

Thus, if a and 6 belong to the class, a © 6 denotes an object uniquely deter-

mined by a and 6 according to the first rule, and aob denotes an object

uniquely determined by a and 6 according to the second rule. These objects

a © 6 and a 0 6 do not necessarily belong to the class unless such condition is

expressly stated. (We may think of a © 6 as the " sum " and a o 6 as the

" product " of the two elements a and 6.)

A class in which the rules of combination © and o are so defined as to

satisfy any one of the eight sets of postulates given below shall be called a

field (Körper) J with respect to © and 0. (A field may be thought of,

briefly, as any assemblage in which the rational operations of algebra can all be

performed.)

The object of the paper is to show (1) that any one of these eight definitions

of a field agrees with the definition usually given ; and (2) that the postulates

of each set are mutually independent, that is, that no postulate of any one set is

deducible from the other postulates of that set.

The simplest definition of a field is that supplied by the first set, which con-

tains only seven postulates : Al, A2, AS, Ml, 312, 313, D.

An example of an infinite field is the system of all rational numbers (positive,

negative and 0), with a © 6 = a + 6 and a o 6 = ab.

* Presented to the Society at the Evanston meeting, September 2, 1902. Received for publi-

cation, November 16, 1902.

t On the fundamental concepts, cf. Stolz and Gmeinkr, Theoretische Arithmetik, 1901, § 4,

and the writer's paper on the postulates of magnitude, Transactions, vol. 3 (1902), p. 264.

{On the concept of a field (first employed by Dedkkind), see H. Weber, Algebra, vol. 1

(1898), p. 491 ; E. H. Moore, Mathematical Papers read at the Chicago Congress of 1893, p. 211 ;

L. E. DICKSON, Linear groups with an exposition of the Galois Field theory, 1901.
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An example of a finite field is the system of p integers 0, 1, 2, •••, p — 1

(p being any prime number), with a © 6 = a + 6 (mod p) and a © 6 = ab

(mod p).

Another example of a finite field is the system of the four digits 0, 1, 2, 3,

with a @ b and aob defined by the following " multiplication tables " :

0    12    3 ©

0    12    3

10    3    2

2 3    0    1

3 2    10

0    12    3

0 0    0    0

0 12    3

0 2    3    1

0 3    12

As a matter of fact, any set of n objects can be made a field by suitable

definitions of © and ©, provided the number of elements, n, is a power of a

prime.*

list of postulates from which the eight sets are selected.

To avoid repetition, we give here a list of seventeen postulates from which

our eight sets are selected. In this list the letters A and M are intended to

suggest " addition " and " multiplication ; " the figures 1 and 2 indicate the

commutative law and the associative law respectively, while D denotes the

distributive law. The figure 3 indicates a postulate which demands the exist-

ence of an element satisfying some condition.

The postulates A 1, 2, 3 or A V, 2', 3', 4' are the same as those used by

the writer to define an Abelian group.-)-

Al. If a, 6 and 6©a belong to the class, then o©6 = 6©a.

A2. If a, b, c, a © 6, 6 © c and a © (6 © c) belong to the class, then

(a©6)©c= a©(6©c).

.43. For every two elements a and 6(a = 6ora=}=6) there is an element x

such that a. © x = 6.

Al'. If a, 6, a © 6 and 6 © a all belong to the class, then a © 6 = 6 © a.

A2'. If a, b, c, a@b, 6©c, (o©6)©c and a©(6©c) all belong to the

class, then (a©6)©c=a©(6©c).

.43'. For every two elements a and b (a= b or a + 6) there is an element

x' such that (a©x')©6= 6.

A4'. If a and 6 belong to the class, then a®b also belongs to the class.

»GALOIS, 1830; Bee Journal de mathématiques, vol. 11 (1846), pp. 398-407. The the-

orem that every finite field is necessarily a Galois field of order a power of a prime was first

proved by E. H. MOORE, loc. cit.    See Dickson, Linear Groups, § 18.

transactions, vol. 4, pp. 27, 29.
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311. If a, 6 and 6 o a belong to the class, then a o 6 = 6 0 a.

312. If a, 6, c, a 0 6, 6 © c and a o (b 0 c) belong to the class, then

(a©6)oc = ao(6oc).

313. For every two elements a and 6(a = 6ora+6), provided a© a + a

and 6©6 + 6, there is an element y such that aoy = bt

Ml'. If a, 6, a 0 6 and 6 o a all belong to the class, then a o 6 = 60 a.

M2'. If a, 6, c,ao6,6oc, (a©6)oc and o o (6©c)all belong to the class,

then (ao6)oc = a0(6oc).

M3'. For every two elements a and 6(a=6ora+ 6), provided a® a 4= a

and 6©6 4= 6, there is an element y' such that (aoy')ob = 6.

M4'. If a and 6 belong to the class, and 6©6 + 6, then a o 6 also belongs

to the class.

D. If a, 6, c, 6©c, a o 6, aoc and (a©6)©(aoc) belong to the class,

then a0(6©c) = (a©6)©(c/Qc).

I)'. If a, 6, c, 6©c, a©6, aoc, ao(6©c) and (ao6)©(aoc) all belong

to the class, then ao(6©c) = (a©6)©(a©c).

3I0. If a and 6 belong to the class, and 6 © 6 = 6, then a © 6 also belongs to

the class.

The eight definitions of a field.

From the list of postulates just given we form the following eight sets, any

one of which may be taken as a definition of a field :

Def. 1.    A\,A2,A3, 311, 312, MS, D.

Def. 2.    A1,A2,A3, 311, 312,M3, D', M0.

Def. 3.    Al, A2, A3, Ml', 312', M3', M4',        D.

Def. 4.    .41, ¿2, .43, Ml', 312', 313', M4',        D', M0.

Def. 5.    Al', A2', A3', A4',        Ml, 312, 313, D.

Def. 6.    Al', A2', A3', A4',        311,312,313, D', M0.

Def. 7.    Al', A2', A3', A4',        311', 312', M3', M4',        D.

Def. 8.    Al', A2', A3', A4',        311', M2', 313', M4',        D', M0.

It will be noticed that Def. 1 involves seven postulates ; Defs. 2, 3 and 5

each involve eight, Defs. 4, 6 and 7 each involve nine and Def. 8 involves ten.

Remark. In Def. 4 and in Def. 8 we might replace M4' and M0 by a single

postulate requiring that aob shall always belong to the class whatever ele-

ments a and 6 may be, and thus reduce the number of postulates in each of

these sets by one.*

*The latter definition thus obtained is essentially the same as the first of two definitions pro-

posed by L. E. Dickson ; see p. 14 of the present number of the Transactions.

Trans. Am. Math. Soc. 3
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Agreement with the accepted definition of a field.

It is easy to see that every field in the usual sense will satisfy all our eight

definitions, hence the postulates of each of our eight sets are consistent. We

now show, conversely, that every system S(®, ©), which satisfies any one of

our eight definitions will be a field in the usual sense.

Since all the definitions include either the three postulates A 1, 2, 3 or the

four postulates A T', 2', 3', 4', we have :

Theorem I.    The elements of S form a commutative group with respect to ©.

Hence,* the sum a©6 of any two elements will itself be an element of the

class ; subtraction f will always be possible and the result uniquely determined ;

and a peculiar element 0 will exist having the additive property of zero :

a©0=0©a = 0 for every element a.

In particular, a®a = a when and only when a = 0. (Compare MS, MS',

M4',M0.)

Again, all the definitions include either Ml, 2, S or Ml', 2', 3', 4'; hence

if we can prove :

Io) in MS: yA= 0; 2°) in M3' : y  +- 0;

3°) in M4' : aob + 0 when a +- 0, 6 + 0;

then we shall have :

Theorem II. The elements of S exclusive of 0 form a commutative group with

respect to ©.

Hence will follow : The product a © 6 of two elements not 0 will itself be an

element not 0 ; within the sub-class of elements not 0, division \ will always be

possible, and the result uniquely determined ; and a peculiar element 1 will

exist, having, within this sub-class, the multiplicative property of unity:

a© 1 = 1 ©a= a, when a + 0.

Proof of (Io). Considering first the Definitions 1, 2, 5, 6, we see that in

MS, y Ar 0.    For if we suppose y = 0, then, by D or D',

b = aoy = ae(y<sy) = (aoy)o)(aoy) = b®b,

which contradicts the hypothesis that 6 + 6 © 6.

Thus Theorem II is established for Definitions 1, 2, 5, 6.

Before passing to the proof of (2° ) and (3°) we establish next, for all the

definitions, the multiplicative property of 0 (Theorem III).

*See p. 28, where proofs of the fundamental group properties here used may be found.

t Definition of b — a : If a © a; = b then x = b — a.

X Definition of i/o : If aQx = b then x=b¡a.
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Lemma 1. The product c © 0 is an element of the class when c + 0.

In case of Defs. 2, 4, 6, 8 the lemma follows at once from M0.—In case of

Defs. 1, 3, 5, 7 the proof is as follows : Let c be any element not 0, and take

c so that c©c' = 0, where clearly c + 0. Then c©c and c©c' will belong

to the class (by Theorem II in case of Defs. 1 and 5 ; by M4' in case of Defs.

3 and 7). Applying D, c©(c©c') = (c©c)©(c©c'); therefore cqO will

belong to the class.

Lemma 2. The product 0 © c will be an. element of the class when c + 0.

This follows by M4' in the case of Defs. 3, 4, 7, 8 ; and by Lemma 1 and

Ml in the case of Defs. 1, 2, 5, 6.

Lemma 3. The product 0 © 0 is an element of the class.

In case of Defs. 2, 4, 6, 8 this follows at once from M0.—In case of Defs.

1, 3, 5, 7 take c and c' as in Lemma 1. Then 0©c and Ooc' are elements of

the class, by Lemma 2. Applying D, 0©(c©c') = (0©c)©(0©c'), whence

0 © 0 will belong to the class.

Theorem III.    For every element a,a©0 = 0©a = 0.

For a©0 and 0©œ are always elements of the class, by Lemmas 1, 2, 3.

Applying D or D', aoO = a©(0©0) = (a©0)©(a©0); hence a©0=0.

Then by Ml or Ml', 0©a= 0.

Using Theorem III we can now complete the proof of Theorem II for

Definitions 3, 4, 7, 8, as follows:

Proof of (2°). —In MS', y + 0. For, if y = 0, we should have

6= (a©7/')©6= 0©6= 0, which contradicts the hypothesis.

Proof of (3°).—In M4', a©6 + 0 when a + 0 and 6 + 0. For, by M4'

and Theorem III, every product will be an element of the class ; hence if

a © 6 = 0, we should have 6 = (a©7/')©6 = (a©6)©7/'=0©7/' = 0, by

MS', Ml', M2'.

Thus Theorem II is established for all cases.

Combining the immediate consequences of Theorem II with Theorem III

we have : The product a © 6 will always be an element of the class ; division

will always be possible when the divisor is not 0, and the quotient will be

uniquely determined ; and there will be a peculiar element 1 such that

a©l = l©a = a whatever the element a.

These results, together with the commutative, associative and distributive

laws, show that our system S will have all the characteristic properties of a

field in the accepted sense.*

*See, for example, Dickson, Linear Groups, §5. Since the operations © and © are thus

shown to obey the familiar laws of addition ( + ) and multiplication ( • ), the circles around

these symbols are conveniently omitted in further developments of the abstract field theory.



36 E.   V.   HUNTINGTON :    DEFINITIONS   OF   A   FIELD [January

Independence of the postulates.

The independence of the postulates of each of the eight sets may be estab-

lished by the use of the following systems.    For example, the system marked

(.41) fails to satisfy the postulate Al, but will be found to satisfy all the other

postulates of any set in which this postulate occurs.*

(.41) or (-41'). The system of all positive rational numbers, with a©6 = 6

and aob = ab.

In proving that this system satisfies A3, A3', M3, M3', take x = b,

x' = any element, y = b/a, y' = 1/a.

(A2) or (.42'). The system of all positive real numbers, with a©6 = Vab

and aob = ab.

Postulates A2, A2' fail, for (2©2)©8 = 4 while 2©(2©8) = i/8. In

.43 and A3' take x = b2¡a, x = b2/a. Postulates D and D' are satisfied, since

a©(6©c) = aVbc = (a ob)® (aoc).

(A3) or (A3'). The system of all positive rational numbers, with a © 6 = a + 6

and aob = ab.

To show that A3 and A3' fail, consider a = 5, 6 = 2.

(.44'). The system of all rational numbers, with a©6 defined as follows:

when a + 6 = 0 or. a = 0, then a © 6 = a + 6 ; otherwise, a © 6 = \/2 ; and

always, aob = ab.

Here A4' clearly fails, since V2 is not an element of the system. In A3'

take x'=—a. In 313, 313' take y = b/a, y' = lla, which will always

belong to the system when a®a 4= a, that is, when a 4= 0. Postulate D

holds whenever the conditions stated are fulfilled. (We notice in passing that

this system does not satisfy .41, .42 or A3 ; as a matter of fact, A4' is deduci-

blefrom^l, ^42, .43.)

(.Ml) or (Ml'). The system of all integral numbers, with a©6 = a + 6

and a o 6 = 6.

In A3, A3' take x=b — a, x = — a.

(M2) or (Jf2').f    The system of all couples (ax, a2) in which ax and a2

*This is the now familiar method of Peano and Hilbert.

f This system for proving the independence of M 2 and M2' was suggested to me by Professor

L. E. Dickson. Another system whioh may be used for the same purpose is the system of

four digits 0, 1, 2, 3, with a © b and aob defined by the following " multiplication tables " :

0    12    3

0 1

1 0

2 3

3 2

2 3

3 2

0 1

1 0

0    12    3

0 0   0   0

0 13    2

0 3    2    1

0 2    13
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are rational numbers ; with

(ax, a2)e(ßx> ßj = (ax + ßx, a2 + ß2)

and

(ax,a2)o(ßx, ß2) = iaxßx-a2ß2, -axß2-a2ßx).

(If we represent these couples by points in the complex plane, © will be the

ordinary addition of complex numbers, and © will be the ordinary multiplica-

tion followed by reflection in the axis of a's. )

Postulates M2,M2' fail, since [(1, 0)©(1, 1)] ©(0,1) = (1,-1), while

(1,0)©[(1,1)©(0,1)]=(-1,1).
In MS, MS', if a= (ax, a2) and 6 = (ßx, ß2), take

,, _ ( «iA^ a2 ß> ^_a2 fV^ <hß2 \

y-\    011 + 0$     > a* + al       )>

,/ _ (aAß\~ß\) - a2Í~ 1ßxßJ ^a2(ß\ -ß\)~ axj-2ßxß2)\

V " V        («Ï + *¡)(ßi + ß\)        ' («* + af)(ß\ + ß\) )•

(MS) or (MS'). The system of all integral numbers, with a©6 = a + 6

and a © 6 = ab.

i M4' ). The system of all rational numbers, with a © 6 = a 4- 6, and a © 6

defined as follows : when o6 = 0,l,2,3,---,ora= 1, then a © 6 = ab ; other-

wise, a©6 = Vo-

llere M4' clearly fails, since V2 is not an element of the system. In MS'

take y' = 1/a. Postulate D holds whenever the conditions stated are fulfilled.

(We notice in passing that this system does not satisfy Ml, M2 or JÍ3.)

(D) or (-£>'). The system of all integral numbers, with a©b = a + 6 and

O0Í = a + 6.

Here 1© (1©1) = 3 while (1 © 1 )©(1 o 1) = 4.

(Jf0). In Definitions 2 and 6 consider the system of all rational numbers,

with a © 6 = a + 6, and a © 6 defined as follows : when ab + 0, a © 6 = ab ;

when ab — 0, a©6 = j/2.     (This system does not satisfy D or 314'.)

In Definitions 4 and 8 consider the same system with a o 6 = ab when 6 + 0

while otherwise a © 6 = V2-    (This system does not satisfy D or ilf 1. )

The independence of all the postulates of each set is thus established.    Indeed,

since each of the systems employed for this purpose is infinite, we see that each

of our eight sets of postulates will still be a set of independent postulates even

if we add the requirement that the field shall be infinite.

Haevaed University, Cambridge, Mass., August, 1902.


