ON THE CLASS NUMBER OF THE CYLCLOTOMIC NUMBER FIELD

\[k(e^{2\pi i/p^n})^* \]

BY

JACOB WESTLUND

Introduction. — The object of the present paper is to investigate the relation between the class numbers of the cyclotomic number fields \(k(e^{2\pi i/p^n}) \) and \(k(e^{2\pi i/p^{n-1}}) \) when \(p \) is any odd prime and \(n \geq 2 \). The method is similar to the method used by Weber \(\dagger \) for the case \(p = 2 \).

Let \(m = p^n, m' = p^{n-1}, \mu = \phi(m) = p^{n-1}(p - 1), \mu' = \phi(m') = p^{n-2}(p - 1) \),
\(r = e^{2\pi i/p^n}, r' = e^{2\pi i/p^{n-1}} \). Denote by \(h \) and \(h' \) the class numbers of \(k(r) \) and \(k(r') \) respectively, and set
\[h = h' H. \]

We also set \(h = kh_1, h' = k'h_1' \), \(k = k'A, h_1 = h_1'B \) and hence
\[H = AB, \]
where \(h_1 \) and \(h_1' \) are the class numbers of the real fields \(k(r + r^{-1}) \) and \(k(r' + r'^{-1}) \) respectively. Also let
\[E = DE', \]
\(E \) and \(E' \) being the regulators of \(k(r + r^{-1}) \) and \(k(r' + r'^{-1}) \) respectively.

I. Expressions for \(A \) and \(B \).

If we set \(\theta = e^{2\pi i/\mu} \) and \(t \equiv g^r, \mod. m, g \) being a primitive root of \(m \), we have the following expressions for \(k \) and \(h_1: \dagger\dagger \)

\[k = \frac{p_{p-1}^{1+p_{p-1}^n(p-1)-1} + n_{p-1}^{p_{p-1}^{n-1}(p-1)}}{2_{p-1}^{2_{p-1}^{n-1}(p-1)}} \prod X_1^{(s)}, \]

* Presented to the Society at the Evanston meeting, September 2–3, 1902. Received for publication August 25, 1902.

Here t runs through a complete residue system with respect to the modulus m except multiples of p. In (1), s takes all odd and in (2), all even values less than μ except zero.

If we denote by Y the function X corresponding to the field $k(\tau')$, then we have for every $s < \mu'$

$$X^{(\mu')} = Y^{(s)}.$$

For

$$f_{\mu s}(\tau^x) = \sum \theta_{\tau^x \tau^{\ell x}} = \sum \theta_{\tau^x \tau^\ell x} \quad (\theta' = \theta \ell)$$

and

$$f_{\mu s}(\tau^x) = \sum \theta_{\tau^x \tau^{\ell x}} (1 + \rho^x + \ldots \rho^{(p-1)x}) \quad (\rho = e^{2\pi i p}),$$

where t' runs through a complete residue system, mod. m', except multiples of p.

Hence

$$f_{\mu s}(\tau^x) = 0, \quad \text{if} \quad \lambda \equiv 0, \quad \text{mod. } p$$

and

$$f_{\mu s}(\tau^x) = p \sum \theta_{\tau^x \tau^{\ell x}} \quad \text{if} \quad \lambda \equiv 0, \quad \text{mod. } p.$$

In the last expression $\lambda = p\lambda'$ and $\gamma' \equiv t' \text{ mod. } m'$. From this (3) follows directly.

To obtain expressions for h' and h'_1, we replace, in (1) and (2), n by $n - 1$ and X by Y. Making use of (3) we then get after a few reductions the following expressions for the factors A and B:

$$(4) \quad A = \frac{p}{2} \prod_{s=2}^{\frac{np-2(p-1)^2}{2}} \prod_{s=1}^{\frac{np-2(p-1)^2}{2} - 1} X_1^{(s)},$$

$$(5) \quad B = \frac{p}{2} \prod_{s=2}^{\frac{np-2(p-1)^2}{2}} \prod_{s=1}^{\frac{np-2(p-1)^2}{2} - 1} X_2^{(s)}.$$

In (4), s takes all odd and in (5), all even values less than μ except multiples of p.
II. The factor A.

1. Simplification of the expression for A. We will now show how the expression for A given above may be simplified so as to make it more convenient for numerical computation and also prove that A is an integer.

Consider the function $f_s(r^\lambda)$. Two cases present themselves: $\lambda \not\equiv 0$, mod. p, and $\lambda \equiv 0$, mod. p.

1°. $\lambda \not\equiv 0$, mod. p. In this case, observing that

$$\theta^{\gamma_1} = \theta^{\text{ind } \lambda},$$

we get, after replacing λt by t,

$$f_s(r^\lambda) = \theta^{-s \text{ ind } \lambda} \sum_{t} \theta^{s \text{ ind } \gamma} t = \theta^{-\gamma_1}(\theta^s, r),$$

where $\gamma_1 = \text{ind } \lambda$.

2°. $\lambda \equiv 0$, mod. p. In this case set $\lambda = p\lambda$, and we have

$$f_s(r^\lambda) = \sum_{t} \theta^{s \gamma \nu \lambda t} = \sum_{\gamma} \theta^{s \gamma + (p-1)\lambda_1 t}.$$

Let a be the greatest common divisor of s and $p-1$, and set $p-1 = ab$. Then the exponents in (7) fall into a groups which are congruent to each other mod. μ, the elements of each group being incongruent mod. μ. Hence

$$f_s(r^\lambda) = a \sum_{\gamma} \theta^{s \gamma + (p-1)\lambda_1 t},$$

where

$$\gamma = 1, 1 + a, 1 + 2a, \ldots, 1 + (p^n - 1)b - 1) a.$$

But the μ/a terms under the summation sign are the roots of the equation

$$x^{p^n - 1} - 1 = 0,$$

and hence

$$f_s(r^\lambda) = 0.$$

Making use of (6) and (8), which hold for both even and odd values of s, we get

$$X^{(s)} = \frac{\pi i}{n^2} (\theta^s, r) \phi(\theta^s);$$

if we set

$$\phi(\theta^s) = \sum_{\lambda} \lambda \theta^{-\gamma},$$

where $\gamma = \text{ind } \lambda$ and $\lambda = 1, 2, \ldots, m - 1$ except multiples of p.

The function $\phi(\theta^r)$ may however be simplified. Since

$$(m - \lambda) \theta^{-r \text{ ind } (m-\lambda)} = -(m - \lambda) \theta^{-r \text{ ind } \lambda},$$

we get

$$(11) \quad \phi(\theta^r) = \sum_{\lambda} (2\lambda - m) \theta^{-r},$$

where $\lambda = 1, 2, \ldots, (m - 1)/2$ except multiples of p. For A we then obtain, observing that

$$\theta^{\mu - s} = \theta^{-s}(\theta^r, r)(\theta^{-r}, r) = (-1)^r p^n, *$$

the following expression

$$(12) \quad A = \prod_{s} \phi(\theta^r) = \frac{\prod_{s} \phi(\theta^r)}{2^{p-2(p-1)s} p^{\frac{n-2(p-1)s}{2}}},$$

where s takes all odd values less than μ.

2. Proof that A is an integer. It is evident that $\phi(\theta^r)$ is an algebraic integer in the field $k(\theta)$. Now we have

$$\phi(\theta^r) = \sum_{i}^{\mu} \lambda_i \theta^{-r} = \sum_{i}^{\mu/2} (\lambda_i - \lambda_{i/2 + i}) \theta^{-r} \quad (i = \text{ ind } \lambda).$$

But since

$$\lambda_{\mu/2 + i} = g^{\mu/2 + i} = -g^{i} \equiv -\lambda_i \quad \text{mod. } m,$$

we have

$$\lambda_{\mu/2 + i} = m - \lambda_i,$$

and hence

$$\phi(\theta^r) = 2 \sum_{i}^{\mu/2} \lambda_i \theta^{-r} - m \sum_{i}^{\mu/2} \theta^{-r} = 2 \sum_{i}^{\mu/2} \lambda_i \theta^{-r} + \frac{2m}{1 - \theta^r}$$

or

$$(1 - \theta^r) \phi(\theta^r) = 2 \left[(1 - \theta^r) \sum_{i}^{\mu/2} \lambda_i \theta^{-r} + m \right].$$

But

$$\prod_{i} (1 - \theta^r) = \frac{\prod_{i} (1 - \theta^t)}{\prod_{i} (1 - \theta^{t'})},$$

where $\theta' = \theta^r$, and t and t' take all odd values less than μ and μ' respectively. Hence, the quantities θ^t and $\theta^{t'}$, being the roots of the equations,

$$x^{\mu/2} + 1 = 0 \quad \text{and} \quad x^{\mu'/2} + 1 = 0$$

respectively, it follows that
\[\prod_i (1 - \theta^i) = 1. \]

Hence we see that \(\Pi \phi(\theta^r) \) is divisible by \(2^{m-2(p-1)^2/2} \).

To prove that \(\Pi \phi(\theta^r) \) is divisible by \(p \) we have
\[
(g - \theta^r) \phi(\theta^r) = \sum_i (g \lambda_i - \lambda_{i+1}) \theta^{-ir}.
\]

But
\[g \lambda_i \equiv \lambda_{i+1}, \mod. m; \]
hence
\[(g - \theta^r) \phi(\theta^r) = m\phi(\theta^r), \]
where \(\phi(\theta^r) \) is an algebraic integer, and therefore
\[
\prod_i (g - \theta^r) \phi(\theta^r) = m^{p-1} \prod_i \phi(\theta^r).
\]

But
\[
\prod_i (g - \theta^r) = \frac{\prod_i (g - \theta^r)}{\prod_i (g - \theta'^r)},
\]
where \(t \) and \(t' \) take all odd values less than \(\mu \) and \(\mu' \) respectively. Hence, reasoning as above, we find
\[
\prod_i (g - \theta^r) = \frac{g^{\mu/2} + 1}{g^{\mu'/2} + 1}
= g^{\frac{\mu'}{2}(p-1)} - g^{\frac{\mu'}{2}(p-2)} + \cdots + 1,
\]
or, since \(g^{\mu'/2} \equiv -1, \mod. m' \),
\[
\prod_i (g - \theta^r) \equiv p, \mod. m.
\]

We thus see that \(\prod (g - \theta^r) \) is divisible by \(p \) and by no higher power of \(p \). Therefore \(\Pi \phi(\theta^r) \) is divisible by \(p^{p-1(p-1)^{m/2-1}} \) and hence \(A \) is an integer.

If we now denote by \(A_n \) the factor \(A \) corresponding to \(m = p^n \), we get the following expression for the first factor \(k \) of the class number of \(k(r) \):

\[
k = k_1 A_2 A_3 \cdots A_n,
\]
where \(k_1 \) is the first factor of the class number of \(k(e^{2\pi i/p}) \).
III. The factor B.

1. Simplification of the expression for B. Making use of (6) and (8), $X^{(s)}_2$ may be written

$$X^{(s)}_2 = -\frac{(\theta^s, r)}{m} \sum_{\lambda} \theta^{-\gamma} \log \sin \frac{\lambda \pi}{m},$$

where $\gamma = \text{ind } \lambda$ and $\lambda = 1, 2, \ldots, m - 1$ except multiples of p. But since

$$\theta^{-\text{ind } (m-\lambda)} \log \sin \frac{(m-\lambda) \pi}{m} = \theta^{-\text{ind } \lambda} \log \sin \frac{\lambda \pi}{m},$$

we obtain

$$X^{(s)}_2 = -\frac{2(\theta^s, r)}{m} \sum_{\lambda} \theta^{-\gamma} \log \sin \frac{\lambda \pi}{m},$$

for $\lambda = 1, 2, \ldots, (m - 1)/2$ except multiples of p. From this we get after a few reductions the following expression for B:

$$BD = \prod_s \psi(\theta^s),$$

where s takes all even values, less than μ, not divisible by p and

$$\psi(\theta^s) = \sum_i \theta^{-s_i} \log \sin \frac{\lambda_i \pi}{m} \quad (i = \text{ind } \lambda_i).$$

We will now show how the product $\prod \psi(\theta^s)$ can be expressed in the form of a determinant. We have

$$\psi(\theta^s) = \sum_i \theta^{-s_i} \log \frac{\sin \frac{\lambda_i \pi}{m}}{\sin \frac{\pi}{m}} + \log \sin \frac{\pi}{m} \sum_i \theta^{-s_i}$$

$$= \sum_i \theta^{-s_i} \log \tau_i = \sum_i \theta^{-s_i} l_i,$$

where $l_i = \log \tau_i$ and

$$\tau_i = \frac{\sin \frac{\lambda_i \pi}{m}}{\sin \frac{\pi}{m}} = r^{1-\lambda_i} - \frac{1 - r^{\lambda_i}}{1 - r};$$

or, if we set $\theta^s = \theta_1$, then, since s is even, $\theta_1^{-\mu/2} = 1$ and

$$\psi(\theta^s) = \sum_i \theta_1^{-s_i} l_i.$$
Now consider the system of equations:

\[\psi(\theta_1) = l_0 + l_1 \theta_1^{-1} + \cdots + l_{\frac{\mu}{2} - 1} \theta_1^{-\left(\frac{\mu}{2} - 1\right)}, \]

(20)

\[\theta_1^{-1} \psi(\theta_1) = l_{\frac{\mu}{2} - 1} + l_0 \theta_1^{-1} + \cdots + l_{\frac{\mu}{2} - 2} \theta_1^{-\left(\frac{\mu}{2} - 2\right)}, \]

\[\theta_1^{-\left(\frac{\mu}{2} - 1\right)} \psi(\theta_1) = l_1 + l_2 \theta_1^{-1} + \cdots + l_0 \theta_1^{-\left(\frac{\mu}{2} - 1\right)}; \]

from which we get, by eliminating the powers of \(\theta_1 \),

\[
\begin{vmatrix}
 l_0 - \psi & l_1 & l_2 & \cdots & l_{\frac{\mu}{2} - 1} \\
 l_{\frac{\mu}{2} - 1} & l_0 - \psi & l_1 & \cdots & l_{\frac{\mu}{2} - 2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 l_1 & l_2 & l_3 & \cdots & l_0 - \psi
\end{vmatrix} = 0.
\]

(21)

This equation is of degree \(\mu/2 \) and its roots are the quantities \(\psi(\theta^s) \) for \(s = 0, 2, 4, \ldots \mu - 2 \). The product of these roots is then expressed by the following determinant whose absolute value we denote by \(T_1 \):

\[
\Pi_s \psi(\theta^s) = \pm \begin{vmatrix}
 l_0 & l_1 & \cdots & l_{\frac{\mu}{2} - 1} \\
 l_1 & l_2 & \cdots & l_0 \\
 \vdots & \vdots & \ddots & \vdots \\
 l_{\frac{\mu}{2} - 1} & l_0 & \cdots & l_{\frac{\mu}{2} - 2}
\end{vmatrix} = \pm T_1.
\]

(22)

In a similar manner, making use of the fact that in this case \(\theta_1^{-\mu/2} = 1 \), we obtain \(\Pi_s \psi(\theta^s) \) where \(s \) runs through the even multiples of \(\mu \), from the following system of equations:

\[\psi(\theta_1) = L_0 + L_1 \theta_1^{-1} + \cdots + L_{\frac{\mu'}{2} - 1} \theta_1^{-\left(\frac{\mu'}{2} - 1\right)}, \]

(23)

\[\theta_1^{-1} \psi(\theta_1) = L_{\frac{\mu'}{2} - 1} + L_0 \theta_1^{-1} + \cdots + L_{\frac{\mu'}{2} - 2} \theta_1^{-\left(\frac{\mu'}{2} - 2\right)}, \]

\[\theta_1^{-\left(\frac{\mu'}{2} - 1\right)} \psi(\theta_1) = L_1 + L_2 \theta_1^{-1} + \cdots + L_0 \theta_1^{-\left(\frac{\mu'}{2} - 1\right)}, \]

where

\[
L_i = l_i + l_{i + \frac{\mu'}{2}} + \cdots + l_{i + (p-1)\frac{\mu'}{2}} \quad (i = 0, 1, \ldots, \frac{\mu'}{2} - 1).
\]

(24)

Then as above \(\Pi \psi(\theta^s) \) is expressed by the following determinant whose absolute value we denote by \(T_2 \):
(25) \[\prod_{\nu} \psi(\theta^\nu) = \pm \begin{vmatrix} L_0 & L_1 & \cdots & L_{\mu'}_{2-1} \\ L_1 & L_2 & \cdots & L_{0} \\ \vdots & \vdots & \ddots & \vdots \\ L_{\mu'}_{2-1} & L_0 & \cdots & L_{\mu'}_{2-2} \end{vmatrix} = \pm T_2. \]

Hence from (22) and (25) we get

(26) \[BD = \frac{T_1}{T_2}. \]

From (24) it is seen that \(T_1 \) may be written

\[\pm T_1 = \begin{vmatrix} L_0 & \cdots & L_{\mu'}_{2-1} & l_{\mu'}_{2} & \cdots & l_{\mu'}_{2-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ L_{\mu'}_{2-1} & \cdots & L_{\mu'}_{2-2} & l_{0} & \cdots & l_{\mu'}_{2-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ L_0 & \cdots & L_{\mu'}_{2-1} & l_{0} & \cdots & l_{\mu'}_{2-1} \\ L_{\mu'}_{2-1} & \cdots & L_{\mu'}_{2-2} & l_{0} & \cdots & l_{\mu'}_{2-1} \end{vmatrix} \]

Introducing the set of units

\[\tau'_i = r^{\frac{\lambda_i - \lambda_{i+\mu'}/2}{2}} \frac{1 - r^{\lambda_{i+\mu'}/2}}{1 - r^{\lambda_i}} = \frac{\sin \frac{\lambda_{i+\mu'}/2 \cdot \pi}{m}}{\sin \frac{\lambda_i \pi}{m}}, \]

with \(l'_i = \log \tau'_i \), and making use of the fact that \(l'_i = l_{i+\mu'/2} - l_i \), we get

\[T_1 = T_2 \cdot T_3, \]

where

\[T_3 = \pm \begin{vmatrix} l'_0 & l'_1 & \cdots & l'_{(p-1)\mu'/2-1} \\ l'_1 & l'_2 & \cdots & l'_{(p-1)\mu'/2} \\ \vdots & \vdots & \ddots & \vdots \\ l'_{(p-1)\mu'/2-1} & l'_{(p-1)\mu'/2} & \cdots & l'_{(p-1)\mu'/2-2} \end{vmatrix}, \]

and therefore

\[BD = T_3. \]
2. Normal Units. In order to investigate the character of D, we have to consider the normal* units of $k(r + r^{-1})$. By a normal unit in $k(r + r^{-1})$ we understand a unit $\epsilon(r)$, different from ± 1, which satisfies

\[(29) \quad \epsilon(r)\epsilon(pr)\epsilon(p^2r)\cdots\epsilon(p^{n-1}r) = \pm 1,\]

where $p = e^{2\pi i/p} = r^{p-1}$. This means that the relative norm of $\epsilon(r)$ in $k(r + r^{-1})$, with respect to $k(r' + r'^{-1})$, is ± 1.

It is evident that no unit in $k(r' + r'^{-1})$, which is also a unit in $k(r + r^{-1})$, can be a normal unit. The units τ_i', considered above, are normal units. For

\[\tau_{i+a.\mu'/2}'(r) = \pm \tau_i'(p^{(i+a)/2}A_a r),\]

where

\[g^{a\mu'/2} = (-1)^a + A_a m';\]

and, since $(-1)^a A_a$ runs through a complete residue system with respect to the modulus p when $a = 0, 1, \ldots, p - 1$, it follows that

\[(30) \quad \tau_i'(r)\tau_i'(pr)\cdots\tau_i'(p^{n-1}r) = \pm \prod_{a=0}^{p-1} \tau_i'(a_m^2)(r) = \pm 1.\]

A system of $v = (p - 1)\mu'/2$ normal units $\epsilon_0(r), \epsilon_1(r), \ldots, \epsilon_{v-1}(r)$ is said to be an independent system of normal units if

\[
\begin{vmatrix}
\log |\epsilon_0(r)| & \cdots & \log |\epsilon_{v-1}(r)| \\
\log |\epsilon_0(r^q)| & \cdots & \log |\epsilon_{v-1}(r^q)| \\
\cdots & \cdots & \cdots \\
\log |\epsilon_0(r^{q^{n-1}})| & \cdots & \log |\epsilon_{v-1}(r^{q^{n-1}})|
\end{vmatrix}
\neq 0;
\]

and the absolute value of the determinant is called the regulator of the system $\epsilon_0, \epsilon_1, \ldots, \epsilon_{v-1}$. The units $\tau_0', \tau_1', \ldots, \tau_{v-1}'$, form such an independent system of normal units; for its regulator, being the determinant T_3, is evidently different from zero.

Now let $\epsilon_0, \epsilon_1, \ldots, \epsilon_{v-1}$ be an independent system of normal units and let $L_{i, \kappa} = \log |\epsilon_i(r^{q^\kappa})|$. Then, if $\epsilon'(r)$ be any normal unit and $L'_\kappa = \log |\epsilon'(r^{q^\kappa})|$, we can determine $\xi_0, \xi_1, \ldots, \xi_{v-1}$ from the system of equations

\[(31) \quad L'_\kappa = \xi_0 L_{0, \kappa} + \xi_1 L_{1, \kappa} + \cdots + \xi_{v-1} L_{v-1, \kappa} \quad (\kappa = 0, 1, \ldots, v - 1).\]

That this equation also holds for any value of κ follows immediately from (29) and (30). By applying the same reasoning as for independent systems of units

in any algebraic number field * we can prove that \(\xi_0, \ldots, \xi_{\nu-1} \) are rational, and hence that there exists an independent system of normal units whose regulator is the least possible. Such a system we call a fundamental system of normal units, and any normal unit can be written in the form

\[\pm \epsilon_0^{m_0} \epsilon_1^{m_1} \cdots \epsilon_{\nu-1}^{m_{\nu-1}}, \]

where \(\epsilon_0, \epsilon_1, \ldots, \epsilon_{\nu-1} \) are a fundamental system and \(m_0, m_1, \ldots m_{\nu-1} \) are integers. The regulator of a fundamental normal system is, therefore, a divisor of the regulator of any (independent) system of normal units.

3. Study of \(D \). Let \(\epsilon_1, \epsilon_2, \ldots, \epsilon_{\mu/2-1} \) be a fundamental system of units in \(k(r + r^{-1}) \), with the conjugate logarithms \(\lambda_{1,\kappa}, \lambda_{2,\kappa}, \ldots, \lambda_{\mu/2-1,\kappa} \) and regulator \(E \), and let \(\epsilon_1', \epsilon_2', \ldots, \epsilon_{\mu/2-1}' \) be a fundamental system of units in \(k(r' + r'^{-1}) \) with the conjugate logarithms \(\lambda_{1,\kappa}', \lambda_{2,\kappa}', \ldots, \lambda_{\mu/2-1,\kappa}' \) and regulator \(E' \). Also let \(\omega_0, \omega_1, \ldots, \omega_{\nu-1} \) be a fundamental system of normal units in \(k(r + r^{-1}) \) with the conjugate logarithms \(L_{0,\kappa}, L_{1,\kappa}, \ldots, L_{\nu-1,\kappa} \) and regulator \(T_0 \). Then the units

\[\epsilon_1', \epsilon_2', \ldots, \epsilon_{\mu/2-1}', \omega_0, \omega_1, \ldots, \omega_{\nu-1} \]

form an independent system of units in \(k(r + r^{-1}) \). For since

\[\lambda_{i,\kappa + \mu/2} = \lambda_{i,\kappa} \]

and

\[L_{i,0} + L_{i,\mu/2} + \cdots + L_{i,(\mu-1)\mu/2} = 0, \]

we get for the regulator \(R \) of the system (32),

\[R = p^{\mu/2-1} E' T_0, \]

which shows that \(R \neq 0 \) and hence that (32) form an independent system of units.

We can then determine rational numbers \(m_{i,\kappa} \) and \(M_{i,\kappa} \) such that

\[p\lambda_{i,\kappa} = m_{i,\kappa} + \lambda_{i,\kappa} + \cdots + m_{\mu/2-1,\kappa} + M_{0,\kappa} L_{0,\kappa} + \cdots + M_{\nu-1,\kappa} L_{\nu-1,\kappa} \]

\[\left(\kappa = 0, \ldots, \frac{\mu}{2} - 2; i = 1, \ldots, \frac{\mu}{2} - 1 \right). \]

We now wish to prove that \(m_{i,\kappa} \) and \(M_{i,\kappa} \) are integers. From (34) we get

\[\lambda_{i,\kappa} + \lambda_{i,\kappa + \mu/2} + \cdots + \lambda_{i+(\mu-1)\mu/2} = m_{i,\kappa} + \lambda_{i,\kappa} + \cdots + m_{\mu/2-1,\kappa} \lambda_{\mu/2-1,\kappa}, \]

and, since

\[\epsilon_i(r) \epsilon_i(r^{\mu/2}) \cdots \epsilon_i(r^{(\mu-1)\mu/2}) \]

is a unit in \(k(r' + r'^{-1}) \), it follows that \(m_{1, \epsilon}, m_{2, \epsilon}, \ldots, m_{\mu'/2-1, \epsilon} \) are integers.

We also obtain from (34)

\[
\lambda_{i, \kappa} + \ldots + \lambda_{i, \kappa + (p-1)\mu/2} - p\lambda_{i, \kappa} = -M_{0, \kappa} L_{0, \kappa} - \cdots - M_{v-1, \kappa} L_{v-1, \kappa},
\]

and since

\[
\epsilon_i(r) \epsilon_i(r^{p^m/\mu}) \cdots \epsilon_i(r^{p^{(p-1)\mu/2}}) [\epsilon_i(r)]^p
\]

is a normal unit, it follows that \(M_{0, \kappa}, \ldots, M_{v-1, \kappa} \) are integers.

From (34)

(35)

\[
E = p^{-\frac{\mu}{2} + \frac{1}{2}} RM,
\]

where \(M \) is the determinant of the coefficients \(m_{i, \kappa} \) and \(M_{i, \kappa} \) and hence an integer. Formulae (33) and (35) then give

(36)

\[
D = p^{(\kappa' - \kappa)/2} MT_0.
\]

We now propose to investigate the character of \(M \). To do this let

\[
\lambda'_{i, \kappa} = n_{1, \kappa} \lambda_{i, \kappa} + \ldots + n_{\frac{\mu}{2}-1, \kappa} \lambda_{\frac{\mu}{2}-1, \kappa} \quad (i=1, 2, \ldots, \frac{\mu'}{2}-1),
\]

\[
L_{i, \kappa} = N_{1, \kappa} \lambda_{i, \kappa} + \ldots + N_{\frac{\mu}{2}-1, \kappa} \lambda_{\frac{\mu}{2}-1, \kappa} \quad (i=0, 1, \ldots, v-1),
\]

where \(n_{i, \kappa} \) and \(N_{i, \kappa} \) are integers. Denoting by \(N \) the determinant of the coefficients \(n_{i, \kappa} \) and \(N_{i, \kappa} \), we get

\[
R = EN
\]

and hence

(37)

\[
MN = p^{\frac{\mu}{2} - 1},
\]

i.e., \(M \) and \(N \) are both powers of \(p \). To determine the power of \(p \) by which \(M \) is divisible, we determine a system of integers \(a_1, a_2, \ldots, a_{\mu/2-1} \) without common divisor satisfying the system of equations

(38)

\[
a_1 m_{1,1} + a_2 m_{1,2} + \cdots + a_{\mu/2-1} m_{1, \mu/2-1} = 0 \quad (i=1, 2, \ldots, \frac{\mu'}{2}-1).
\]

Let

\[
a_1 M_{1,1} + a_2 M_{1,2} + \cdots + a_{\mu/2-1} M_{1, \mu/2-1} = \xi_i \quad (i=0, 1, \ldots, v-1),
\]

and we have

\[
p \sum_{i=1}^{\frac{\mu}{2}-1} a_i \lambda_{i, \kappa} = \xi_0 L_{0, \kappa} + \xi_1 L_{1, \kappa} + \cdots + \xi_{v-1} L_{v-1, \kappa},
\]

from which

\[
\sum_{i=1}^{\frac{\mu}{2}-1} a_i \lambda_{i, \kappa} + \sum_{i=1}^{\frac{\mu}{2}-1} a_i \lambda_{i, \kappa + \mu'/2} + \cdots + \sum_{i=1}^{\frac{\mu}{2}-1} a_i \lambda_{i, \kappa + (p-1)\mu'/2} = 0.
\]
Hence we infer that \(e_1^0 e_2^0 \cdots e_{\mu_0}^{2-1} \) is a normal unit and that \(\xi_0, \xi_1, \ldots, \xi_{\nu-1} \) are integers divisible by \(p \). It is then very easy to show, by applying the same reasoning as in the case \(p = 2, * \) that \(M \) is divisible by \(p^{(p-1)/2} \). Hence if we set

\[
M = p^{(p-1)/2} + \sigma,
\]

we obtain from (36)

\[
D = p^\sigma T_0 \quad (\leq \sigma \leq \mu' - 1).
\]

From (28) we then have

\[
B = p^{-\sigma} \frac{T_3}{T_0}.
\]

where \(T_3/T_0 \) is an integer, \(T_0 \) being the regulator of a fundamental system of normal units.

If we now denote by \(B \) the factor \(B \) corresponding to \(m = p^n \), we get the following expression for the second factor of the class number of \(k(r) \):

\[
h_1 = h''_1 B_2 B_3 \cdots B_n,
\]

where \(h''_1 \) is the class number of \(k(e^{2\pi i/p} + e^{-2\pi i/p}) \).

Comparing our results with those obtained by Weber for \(p = 2 \), we notice that, for all values of \(p \), \(A \) is an integer and \(B = p^{-\sigma} T_3/T_0 \), where \(T_3/T_0 \) is an integer. For \(p = 2 \), Weber proves that \(\sigma = 0 \) and that both \(A \) and \(T_3/T_0 \) and hence \(B \) are odd numbers. When \(p \) is an odd prime, the question whether \(A \) and \(T_3/T_0 \) are divisible by \(p \) or not, and what the value of \(\sigma \) is, remains unsettled. The writer, however, hopes to be able to come back to this question in a following paper.

Purdue University,
August, 1902.