
ON THE CONVERGENCE OF ALGEBRAIC CONTINUED FRACTIONS

WHOSE COEFFICIENTS HAVE LIMITING VALUES*

BY

EDWARD  B.   VAN VLECK

Padé-I has shown that a power series P(z) gives rise ordinarily to three

types of regular continued fractions having the forms :

U0(z)     a2z^     a3z     a4z     abz

(I)

(n)t

(Hi)

V0(z)+   i   + i + i + 1 +     '

Ux(z)        b2zp* b3z2 b4z2 bbz2

Vx(z) + c2z + d2+ c3z +d3 + c4z + d4+ cbz + db +

U2(z)        e2z** e3z e4z ebz

V2(z) +AZ + 92 +/sa + 9» +ft* + 9* +fa + g„ +      '

in which U^z), Vt(z) denote certain polynomials with which we need not con-

cern ourselves here. The object of the following note is to investigate the con-

vergence of these three classes of continued fractions upon the hypothesis that the

coefficients an,bn, ■ --,gn have limiting values for n = oo. The results obtained

below for the first two types of continued fractions are in no wise dependent upon

the value of p2 nor upon the nature of the polynomials Ui, Vi, neither are they

affected by the introduction of a finite number of irregularities into the con-

tinued fraction—that is to say, by the presence of a finite number of partial

numerators or denominators of degree higher than the normal. This is not

true of the third type of continued fractions.

§ 1. Preliminary discussion for type I.

Consider first a continued fraction of this type which is regular from the

beginning.    The result which will be proved is as follows :

* Presented to the Society February 27, 1904.    Received for publication April 26, 1904.

t Thesis, Annales de 1' Ecole Normale, ser. 3, vol. 9, supplement (1892).

i If 1/x be substituted for z, type II appears in the familiar form :

Ujx) b2 b,

V{ x) -x d3x + c2 + rfjx- 4- es +
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Theorem.    If in the continued fraction

m Atzï-1   °^   ^I1) A(z)~i+ i + i + •••»

Urn an=k for n= oo, the continued fraction will converge over the entire

plane of z except (1) along the whole or a part of a rectilinear cut drawn from

z = — 1 ¡4k to z = oo with an argument equal to that of the vector from the

origin to z = —l/4k, and except possibly, (2) at certain isolated points

Pi ' Pt > Pzi '"' Within the plane so cut the limit of the continued fraction is

holomorphic except at the points px, p2, p3, -■ -, which are poles.

This result I have previously established under certain restrictions in the

Annals of Mathematics,* and application was there made to the continued

fractions of Gauss, Heine and Bessel. To remove these restrictions a new

and simpler method of proof is adopted here.

The proof is founded upon the familiar formula :

^(«)=5+(-)n«2«3-'-«„«nt-1(^

n \       n

(2)
Dn+X

g,-»0,*«8'    ,    «,.+ 1 «n+2 «„+3^ ■)•

in which JV and D denote the numerator and denominator of the nth con-
n n

vergent of (1).    Between three consecutive denominators their exists the relation

(3) Dn+x = Dn + an+xzDn_x,

which by hypothesis has the limiting form

Dn+X- D-kzD   . = 0.n+1 n n—1

Now PoiNCARÉf has shown that when a limiting form exists for the recurrent

relation and the roots of the auxiliary equation

(4) x2 - x - kz = 0

are of unequal modulus, the quotient Dn+X/Dn will converge to a limit which is

the one or the other of the roots of (4).    Since these roots are

x = \ ± \/\ + kz,

their moduli will be equal only when kz + A is a negative number, that is, when

|z| > 1 /41k| and z has the same argument as —lfk.

»Ser. 2, vol. 3(1901), p. 13.
t American Journal of Mathematios, vol. 7 (1885), p. 213.    Poincaré's theorem is

cited for the special case of a recurrent relation of the 2d order.
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We shall exclude such values of z by drawing the cut already described in

the theorem.    Then at any point not on the cut we have

(5) lim^=/3,
n=oo n

in which ß is a root of (4), and the ratio of the rth term of (2) to the preceding

has the limit — kz/ß2. Since — kz is the product of the roots of (4), the abso-

lute value of this ratio will be less than 1 if ß is the root which has the larger

modulus, while it will be greater than 1 if ß is the other root. Furthermore, it

is clear from (5) that n can be taken so large that no one of the denominators

on the right hand side of (2) will vanish at an assigned point z, not lying upon

the cut. Hence the continued fraction will converge outside the cut at every

point for which ß is the root of (4) which has the greater modulus, while it

increases indefinitely at the remaining points.*

§ 2. Proof of Poincaré's Theorem.

It will be necessary to show next that the last mentioned points can condense

in infinite number only in the vicinity of a point upon the cut. With this

ultimate object in view, it will be desirable to give here a new and simple proof

of Poincaré's theorem. Let ß', /$' denote the two roots of (4) or, more

generally, of the auxiliary quadratic for any recurrent relation of the 2d order

with a limiting form. If a sufficiently large value of n is taken, the recurrent

relation can be expressed in the form

(Dn+x-ß'Dn)-(ß' + -en+x)(Dn-ß'Dn_x)-r-e:+xVn-x=0,

in which | i . j | and I e'n+x [ are smaller than a small positive quantity, arbitrarily

prescribed.    The last equation may be written

(6) (A+i - ß'Dn) -(ß" + e':+x)(Dn - ß'Dn_x) = 0,

where

ëA,D   .
n+l       n—1

D -ß'D
n • n

Consequently, if there is any set of values of n, infinite it number, for which the

point pn = Dn/Dn_x does not come at least once within less than an assigned

distance of ß', we may make | e'^+x | smaller than any given quantity e by increas-

ing n within the set.    Similarly we have

(])_D^x-ß'Dn = (ß' + e:+x)(Dn-ß'Dn_x) (|E;+1|<t),

* Thns far the work has been identical with that of Pincherlk in his consideration of con-

tinued fractions of type II. Cf. Annales de l'Ecole Normale, ser. 3, vol. 6 (1889), p. 144 ;

also Giornale di Matematiche, vol. 32 (1894), p. 234-6. Pincheblk, however, goes no

further and does not settle the character of the point set for which ß is the smaller root of (4).

In consequence, his result is an indefinite one, and he misses the theorems of the present paper.
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for a sufficiently large n in any set of values for which pn lies without some

assigned distance of /3".    The last equation may be written

(8) Pn-rX-ß'^^^^-ß"),

and its division by (6) gives

m P^~ß"    ß' + <-»  p"~ß"    n'   ,^    ,"   t^>
(9) j—p-WTZr'x'p^P   î'W<«.iw<o.

Equation (9) holds for a sufficiently large value of n provided pn lies with-

out an arbitrarily small but prescribed distance of ß' and ß", as I shall for a time

assume. Denote this distance by d and consider the circle \p — ß"\ = d. By

taking d sufficiently small, the ratio of the maximum to the minimum of

-ß"

\P-ß'\

for points upon this circle can be made as nearly equal to 1 as we please. Let

this ratio be 1 + e', in which e' is taken small enough to fulfill the inequality

which is given just below.

Suppose now that | ß' | > | ß" \. Then it is clear from (9) that upon increas-

ing n by 1, the quotient | pn — ß"\ f | pn — ß' \ is increased by a factor at least as

great as the quantity

Hence as pn, by hypothesis, lies without the circle, pn+l does also. But when

(9) holds for a series of successive values of n, we get a set of points pn, pn+x,

Pn+2 » • ' ' i gravitating toward ß' as a limit, and this continues until (9) breaks

down. The last will not happen until pn+m falls within circle | p — ß' | = d. But

then pn+m+x — ß" and pn+m — /3", by (8), are nearly identical vectors since pn+m

differs but little from ß'. Hence the first of the points p„+m+x (i = 1, 2, • • •)

which falls without the circle | p — ß' | = d will differ infinitesimally from

Pn+vt+i-x which lies within. As soon, however, as pn+m+i falls without the circle,

equation (9) operates immediately to draw it back again into the interior. If,

finally, d be made smaller and smaller, it follows that the distance pn — ß' be-

comes and remains eventually as small as we wish. Thus we conclude that

unless pn, from and after some fixed value of n, remains within an arbitrarily

assigned distance of ß", it must approach ß' as its limit. In other words, one

of the two values ß', ß" is its limit, as was to be proved.

§ 3.   Completion of discussion for type I.

We return now to the continued fraction (1) and give to « a fixed value not

on the cut. If a sufficient number of terms of (1) are omitted at the outset, a

new continued fraction will be obtained,
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(10)
A     i~\ am+XZ    , am+2Z    .    am+3S

An(Z)  = —J- + —J- + —j"

in which all the partial numerators differ from their limit kz by as little as we

please.    For this continued fraction

D0 = DX = 1,       />! = § = !•

Now the auxiliary equation has a root equal to 1 only if k = 0. Suppose first

k =j= 0 and apply the reasoning of § 2 to (10), taking e and d to be extremely

small.    Then

\Px-ß"\>d,        \Rl-ß'\>d.

Hence equation (9) takes effect at the very beginning of the continued fraction,

and we obtain a sequence of points px, p2, p3, • ••, approaching ß' as a limit.

For the particular case in which k — 0, we have ß' — 1, and this root is a

fortiori the limit of pn = Bn / Bn_x. We conclude therefore in either case that

the limit of pn is that root of (4) which has the greater modulus, and consequently

the continued fraction (10) will converge at the assigned point z, provided, of

course, the value of m is taken sufficiently large.

The same argument holds simultaneously for values of z in the immediate

vicinity of the chosen point. Take then a very small circle C enclosing the

point. For this circle | z | will have an upper limit U and | /3' j a lower limit B.

Hence from and after some fixed value of n the series (2)—when constructed

for the continued fraction (10)—will be comparable with a geometric progres-

sion in which the ratio of each term to the preceding is

kU(l + e)

X2(l-e)<1-

Hence the convergence of the series is uniform in this circle, and from this fact

the analytic character of its limit immediately follows.

Let the nth convergent of (10) be denoted now by N'n/B'n. Then the

( n + m )th convergent of (1) is

N'

Dm+^Dm_x
n

Since N'JD'n within the circle C has a limit Am(z), the continued fraction (1)

must likewise converge to a limit

Nm + A(z)N   .m    '_m \    /       m—1

(11) D  +A (z)D   ,'
t?i    ' m \    /      to—1
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except at the points of the circle C in which the denominator of (11) vanishes.

If it should vanish identically, then — Dm/Dm_x and Am(z) have the same expan-

sion into a continued fraction. But this is impossible, since Am(z), by hypo-

thesis, has an expansion (10) containing an infinite number of terms, whereas the

development of a rational fraction Dm/Dm_x in a continued fraction of the form

(10), as is well known, has only a limited number of terms. Accordingly the

denominator of (11) is not 0 but an analytic function. Since the zeros of such

a function are isolated, it follows that the continued fraction (1) is either holo-

morphic or meromorphic within the circle C. Now for the center of C any point

not upon the cut can be chosen. Our conclusion therefore can be extended to

the entire plane exterior to the cut. Thus the theorem stated at the beginning

of § 1 is established.

The reasoning is not affected in any way if a finite number of partial numera-

tors or denominators in (1) are replaced by polynomials.

§ 4.  The second class of continued fractions.

The investigation of the second type of continued fractions when limiting values

exist for the coefficients can be reduced quickly to the previous investigation for

type I.    To this end let (II) be written

6/'        _b¿_     _b^__
«Q\   E£$ C*Z + d* (C2Z + d2)(C3*+d3) (C3S+^)(C4g+Q

K     '   Vx(*)+        1        + 1 + 1 +'"•

Then make the substitution

Viz
(13) x =

cz + d

in which 6, c, d denote the limits of bn, cn, dn (n = oo ). Choose for x any

fixed point of the finite plane or any value in its immediate vicinity. If enough

partial fractions at the beginning of (12) are omitted, the remainder of the

continued fraction may be written

(14) 1        +        1        +     '

where em+x, em+2> ■ ■ • are rational functions of x, the absolute values of which

will be less than a given positive number e for a sufficiently small neighborhood

about the fixed point.

The application of § 3 to the continued fraction (14) shows then that it

converges uniformly in such a neighborhood, provided e is small enough and the

fixed point does not lie upon a cut along the imaginary axis of the cc-plane

exterior to the points x2 = — ^.    To this cut there corresponds by (13) a cut
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along an arc of a circle in the »-plane, and to the fixed «-point there corresponds

a »-point exterior to the cut. Returning now to the continued fraction (12) or

(II), we conclude that it will converge uniformly in the vicinity of the a-point

when a sufficient number of terms is omitted. Let Am(z) denote the limit

after the omission in (II). Then for the (n + m)th convergent of (II) we have

again such an expression as (11). But DJDn_x when expanded into a con-

tinued fraction of type II, has only a finite number of terms,* whereas Am(z)

has an infinite number. Consequently Dm + Dm_xAm(z) can not vanish iden-

tically. The following theorem therefore results :

If in the continued fraction (II)

lim b = 6,        lim c = c,        lim d = d,
n ' n ' n *

it will converge over the entire plane of z except (1) at isolated points and

(2) upon the whole or a part of a cut along the arc of a circle into which the

segments of the imaginary axis of x exterior to the points x2 = — \ are con-

verted by the transformation (13). In the plane thus cut the limit of the

continued fraction is holomorphic except at these isolated points which are

poles.

If the alternate convergents of (I) are formed into two distinct sets, those of

either set are by themselves the successive convergents of a continued fraction

of type II, in which the partial fractions after the opening irregularity have the

form

1 + a»+xz + a»z'

It is easy to see that this expression has the same limiting form for odd and for

even values of n if, and only if, a2n and a2n+x have limits.    That then the ana-

lytic functions which are limits of the two sets of convergents are identical fol-

lows at once from a theorem which I have given in a previous paper, f

Thus when a2n and a2n+x in (I) have separate limits, a theorem holds similar

to that previously given except that the cut is in general the arc of a circle.

§ 5. Bestrictions on the power-series.

The relations between the coefficients of the continued fraction and of the

corresponding power-series

P(x) = l0- lxz + l2z2 -l3z3-r-..

* This can be made clear to the reader who is familiar with Padb's thesis in the following

manner : Let Padb's table be formed for the power series P( x) which is the development of a

rational fraction N'¡D with numerator and denominator of the j/th and g'th degrees respec-

tively. His approximants U ¡V will be identical with N ID', for p = p', q = g/. Now to a

continued fraction of type II there corresponds in Pade's table a diagonal line of approximants,

which from and after some fixed element of the line are identical with N'ID'.    In other words,
pi     q I

the continued fraction terminates.

tTransactions, vol. 2 (1901), p. 476.
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have been given by Frobenius. *    In case the continued fraction (1) is regular

from the beginning we put f

A =

also

h     h  ■■■  K

K-l       K       "'       ̂ 2»-2

Then we have

A2nm*» ~ B   ,B%
n—1       n

B =

l    l ..
n n+1

B2
2»+1    A A'

n       n+1

l

a =

or

(15)

Suppose now that

(16)

Then

a        An-xK a A+iK-x
2"~AA-i'       2"+1"   4.3. •

\iaxa2n = a',        lim a2n+x = a"

lim v/axa2a3 ■ ■ -a2n_x = lim ]/     .  "   = a a"
n=<*> "n—1

lim v axa2a3- ■ ■ a2n    = lim ]/
/~B.

= a a

Let us place

T^ = (a'a")"q'n, -s^=(a'a"Yqf

and substitute in (15), finally in (16).    In this manner we find that the series

will generate a regular continued fraction (1) with limits for a2n and a2n+x %

when, and only when, the following conditions are fulfilled: §

(1) An + 0, Bn 4= 0 for all values of n.§

»Journal für Mathematik, vol. 90 (1881), p. 5.

fSee also the memoir of Stieltjes, Annales de la Faculté des Sciences de Tou-

louse, vol. 8 (1894), J, pp. 26 and 3.

t The conditions for the existence of other oontinued fractions of type I, which, though not

regular throughout, possess a like property can be expressed similarly with the aid of the deter-

minants cs of Frobenius. The continued fraction (1) which was selected above, corresponds

to a step-like line of approximants starting from the corner of Padé's table, and is used much

more than the remaining continued fractions of type I.

\ If An~0 and Bn = 0 for only a finite number of values of n, irregularities will occur for a

time in the continued fraction, but limits for ain and a¡n+i will still exist, if the other two condi-

tions are satisfied.
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(2) A common limit a exists for v/An/AR_x and v/Bn/Bn_x.

(3) Bimits also exist for q'„/q'^x and q"Jq'n in which

§ 6.    The third class of continued fractions.

A parallel discussion of (III) leads to somewhat different results.    Let it be

expressed in the form

eazPi e,z e,z

U,     Az + 92     (Az + 9s)(f2z + 92)     (fiz + 9i)(fsz + 93)
v2+    i    + i "+ i "■•••

and then put

(17) X' = x2 = {fi + 9T

in which e, f, g denote the limits of en, fn, gn. We obtain such a continued

fraction as (14). * A difference, however, manifests itself in passing thence to

the equation of the form (11) which gives the (n + m)th convergent of (III).

For it is not the case that the expansion of a rational fraction into a continued

fraction of the third type will have necessarily only a finite number of terms.

Consequently it is possible for the denominator of (11) to vanish identically,

and the convergence or divergence of our continued fraction will depend upon

its initial terms or upon any irregularities which may be introduced. Take, for

example, the continued fraction

U2(z) z z z

U3(z) — l + z — l+z — l + z— '"'

If the first partial fraction be omitted, the nth convergent is

1 + z +-h z"-1
— z

1 + z + z2 +-f- 2n

which has the limit — z if | z | < 1 and the limit — 1 if | z | > 1. Hence the

original continued fraction diverges for |z|<lif U3(z) = z and for |z|>l

if üi(.)-l.
The form of cut to be made in limiting the region of convergence can be

found by transforming the rectilinear cut for (14) by the substitution (17).

This substitution, by a linear change in the x- and «-coordinates, can be reduced to

-»('+?)■

* Cm+n and the convergents are still rational in z, though not in x.
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which is discussed thoroughly in Holzmüllers's Theorie der isogonalen  Ver-

wandschaften, p. 143.

Attention should be called to one special case of frequent occurrence. Place

first g = 1, which may be done without loss of generality. Then suppose

e — — f.    Equation (17) may be written

By this substitution the rectilinear cut along the real axis of the x-plane from

x' = — J to x = — oo is converted into the entire circumference of a circle of

the ¡5-plane having the origin as its center and having a radius equal to 1/e.

The region of convergence is therefore in this case a circle.

Wesleyan University,

MlDDLETOWN, CONN.


