ON THE PRIMITIVE GROUPS OF CLASS 3^p^*

BY

W. A. MANNING

In this paper are considered only those groups which contain a substitution of order p and degree $3p$, p an odd prime. Two general theorems are first established and then class 9 is disposed of before the general problem is considered.

Theorem I. Let A be a substitution of degree pq and order p in a group of class pq, $q \leq p$. No substitution similar to and non-commutative with A can be free from all the letters of any one cycle of A. An exception may occur when $q = p$ and the group contains a transitive subgroup of order p^2.

Let B be a substitution similar to A, non-commutative with A, and free from all the letters of r cycles of A. If $q < p$, no two substitutions similar to A can displace exactly the same letters unless one is a power of the other,† and we may assume this to be true in the groups of class p^2 here considered, since the knowledge that G contains a transitive subgroup of degree p^2 makes its consideration and determination relatively simple.

If B does not connect old and new letters transitively in its cycles, $A^{-1}B^{-1}AB$ is of degree not greater than $(q - r)p$, and is not the identity. We can now assume that B and all its powers connect old and new letters transitively.

It will be shown that a substitution F can always be found among the substitutions similar to A, which transforms into themselves the r cycles of A left fixed by B and which displaces not more than $q - r$ letters new to A. The existence of F depends only upon the existence of B and leads to a substitution, not the identity, which displaces at most $(q - r)p + q - r$ letters. If B displaces not more than q new letters and $q \neq p$, we have at once a substitution $A^{-1}B^{-1}AB$ of degree less than pq. If $q = p$, an apparent exception arises when $r = 1$, and B displaces just p new letters. But here $A^{-1}BA$ is not a power of B and displaces the same p^2 letters as B.

It is now assumed that B displaces more than q new letters, so that some cycle contains at least two new letters. In $B^{-\rho}AB^\rho = C$, suppose ρ so chosen that two new letters which occur in the same cycle of B are adjacent in B^ρ.

*Presented to the Society (San Francisco) April 25, 1903. Received for publication June 2, 1904.

The substitution C does not displace as many new letters as B and in it r cycles of A occur unchanged. C certainly contains one or more new letters. We now wish to show that the new letters which are in C cannot merely fill up isolated cycles of C, but that C also must connect old and new letters in its cycles. Let $C = C_1 SR$, where C_1 contains only old letters, S only new ones, and R is made up of the r unchanged cycles of A. Let S have s cycles. Break A up into two parts, $A = A_1 R$, where $A_1 = c_1 c_2 \cdots c_{q-r}$. The substitution $A^{-1} C = (A^{-1}_1 C_1) S$ contains not more than $(q - r + s)p$ letters. Unless $s \equiv r$, G is of class less than pq. Again $A^{-1} C^{-1} AC = A^{-1}_1 C^{-1}_1 A_1 C_1$ lowers the class of G to $(q - r)p$ or less unless we have $A^{-1}_1 C_1 A_1 = C_1$. This condition can be satisfied only if $C_1 = c_1^{s_1} c_2^{s_2} \cdots c_{q-r}^{s_{q-r}}$, since C_1 has at most $p - 2$ cycles. From this form of C it follows that if a letter of any cycle of A is left fixed by B^p, no letter of that cycle occurs in B. But by hypothesis B is free from just r complete cycles of A. Then B^p contains just $(q - r)p$ old letters. The number of new letters in $B^p = sp = rp$, and since these rp new letters are all found in C, each one of them is in B^p preceded by an old letter. But p was chosen so that two new letters would be adjacent in B^p. We conclude that C connects old and new letters transitively.

Suppose that in some cycle of C two or more new letters are found. Again we choose p so that two new letters are adjacent in C^p. Then $D = C^{-p} A C^p$ displaces fewer new letters than does C, retains unchanged the r cycles of A left fixed by B, and furthermore connects old and new letters. The last statement requires proof.

In case D does not connect old and new letters, $D = D_1 SR$, where D_1 contains old letters only; S, sp new letters only; and R repeats r cycles of A without change. The degree of $A^{-1} D = (A^{-1}_1 D_1) S$ is not greater than $(q - r + s)p$; hence $s \equiv r$. Again $A^{-1} D^{-1} AD = A^{-1}_1 D^{-1}_1 A_1 D_1 = 1$, since this substitution cannot displace more than $(q - r)p$ letters. Hence $D_1 = c_1^{s_1} c_2^{s_2} \cdots c_{q-r}^{s_{q-r}}$. Now $C^{-p} A C^p = D = c_1^{s_1} \cdots c_{q-r}^{s_{q-r}} SR$. It follows that if a letter of any cycle of A is missing from C^p, no letter of that cycle occurs in C. Therefore C leaves fixed all the letters of at least s cycles of A. But we have seen that $s \equiv r$. The same reasoning can now be applied to C as was applied to B. Then D has the properties stated. Applying the same method to D we obtain another substitution E similar to A, connecting old and new letters transitively, containing unchanged at least r cycles of A, and displacing fewer new letters than D. This process can be continued until a substitution F is reached which has at least r cycles of A unchanged, is similar to A, and introduces k ($q - r \equiv k \equiv 1$) new letters with no two new letters in the same cycle. The substitution $A^{-1} F$ displaces not more than $(q - r)p + q - r$ letters, which is contrary to the hypothesis that $r \equiv 1$.
Theorem II. Among the substitutions similar to A in a primitive group of class pq ($1 < q \leq p$), p odd, a substitution B can be found connecting transitively two cycles of A and having not more than one new letter in any cycle.

Since G is primitive the similar substitutions A_1, \ldots generate a transitive group. If no one of the set replaces all the letters a_1, a_2, \ldots, a_p by other letters, one of them connects two cycles of A and has not more than one new letter a in any cycle.* But if A_1 replaces all the letters a_1, \ldots by other letters, these p letters a are found in at least three of the q cycles of A_1, so that by the theorem just proved some cycle of A_1 contains letters from different cycles of A. Therefore there always is in the set A, \ldots a substitution $B = (a, b_1 \ldots) \ldots$.

Among all the substitutions A, \ldots which connect cycles of A, there is one which displaces a minimum number λ of the new letters a. It is immaterial which two cycles of A are connected. Let B be a substitution of the form $(ab\ldots)\ldots$ displacing λ new letters. Also let B leave fixed one of the letters a. It cannot have two new letters a consecutive, for then $B^{-1}AB$ would connect letters a and b in one of its cycles and would displace fewer than λ new letters. Suppose that B has two or more new letters in its first cycle. A convenient power B^p makes these two new letters consecutive. In B^p letters a can only be followed (or preceded) by other letters a and new letters a. Hence in the first cycle of B^p there are the sequences $a’a’$ and $b’ \alpha’\alpha’$, where $a’$ is one of the letters a_1, \ldots, a_p, and $b’$ is one of the remaining $(q - 1)p$ letters of A. Now choose σ so that $B^{p\sigma} = (a’b’ \ldots a’a’\ldots)\ldots$. Since by hypothesis B leaves an a fixed, $B^{-p\sigma}AB^{p\sigma}$ connects cycles of A and has fewer than λ letters a. Then B has just one a in its first cycle. It is clear that any power of B has a letter a followed (or preceded) in its first cycle by a letter from another cycle of A. Hence B cannot have two new letters in any cycle.

We shall now show that it may always be assumed that B leaves a letter a fixed. Suppose that B displaces all the a_1, \ldots, a_p. Evidently the same is true of b_1, b_2, \ldots, b_p. If the $2p$ letters a_1, \ldots, b_i, \ldots occupy just two cycles of B, any power of B replaces some a by an a and some other a by a b, and, as before, B has not more than one new letter a to a cycle. If the $2p$ letters a_1, \ldots, b_i, \ldots are found in more than two cycles of B, two cases arise. First, let no letter c, d, \ldots be in the same cycle with an a or b. Some power B^e of B now connects c and d, say, because of Theorem I. Then B must displace the $2p$ letters c_1, \ldots, d_1, \ldots, and these letters again are found in at least two cycles of B. If no e is in a cycle of B with c or d, we have a B^e connecting e and f, with the same conditions. Proceeding thus we finally find that either B connects two cycles k and l of A, leaving fixed some of the letters k_1, \ldots, k_p, or else B connects three or more cycles of A. So we have the second case,

a letter c is in a cycle with a and b. Here B displaces the $3p$ letters $a_1, \ldots, b_1, \ldots, c_1, \ldots$. These $3p$ letters cannot occupy just 3 cycles of B, for then any power of B would transform A into a new substitution connecting cycles of A. In fact B cannot have kp letters of k cycles of A in k cycles by themselves for the same reason. Hence $a_1, \ldots, b_1, \ldots, c_1, \ldots$ are to be found in at least 4 cycles of B. Continuing thus it is evident that B either displaces all the qp letters of A or connects two cycles of A without displacing all the letters of one of the two cycles.

Class 9.

Let there be a transitive subgroup (F) of degree 9 in G. This subgroup cannot be cyclic for it would then be contained in a doubly transitive G^{10}, which does not exist. If F is non-cyclic it leads to a doubly transitive $G_{13.12.9}^{13}$, also impossible.

We can now say that there is a substitution B similar to A which connects transitively two cycles of A and displaces one, two, or three new letters.

Suppose that $I = \{ A, B \}$ is intransitive. It is a simple isomorphism between two transitive constituents, one of which is of degree 4 and order 12. Now the other constituent can only be of degree 6, and class 4, lowering the class of G to 8.

Then I is transitive. It is of degree 12 and order 36. The 4 systems of imprimitivity of three letters each can be chosen in only one way. Hence I must be maximal in a doubly transitive $G^{13}_{13.12.3}$, an absurdity. No primitive group of class 9 exists.

Class $3p$, $p > 3$.

If a primitive group contains a cyclic subgroup F on $3p$ letters, it also contains a doubly transitive $G^{3p+1}_{(3p+1)3p}$. Then $3p = 2^m - 1$, and $p = 5$. We have here a $G_{16.15}^{16}$ which is maximal in turn in a G^{17}, but is not contained in a 4-ply transitive group of degree 18.†

In case F is non-Abelian only the doubly transitive G^{3p+4} need be examined. Here the subgroup transforming F into itself has a tetrahedral subgroup in its quotient group. But such a subgroup is not to be found in the group of isomorphisms of F.

Let $I = \{ A, B \}$, of degree greater than $3p$, be intransitive, and let I' and I'' be the two simply isomorphic transitive constituents of degrees $2p + k'$.

p + k'', respectively; where \(k', k'' = 0,1 \); \(k' = k'' \neq 0 \). Suppose \(I'_i \) of degree \(p \). It is then of class \(p - 2 \), and hence* is the simple triply transitive \(G_{p,p-1,p-2} \). To all the substitutions not of order \(p \) in \(I'_i \) must correspond substitutions of degree \(2p + 2 \) in \(I' \). Hence \((p - 1)(p - 2) = 2p + 2\), from which \(p = 5 \). The group \(I_i \) is icosahedral of degree 17. Next suppose that \(I'_i \) is of degree \(p + 1 \). It can only be of class \(p - 1 \) and hence is of order \((p + 1)p \). Now \(I''_i \) has \((p + 1)p/2\) subgroups of order 2 on \(p - 1 \) letters, and each is invariant in a subgroup of order 4. But the substitutions of order 2 involve all possible transpositions of \(p + 1 \) letters, so that a given transposition is found in \((p - 1)/2\) distinct substitutions. These \((p - 1)/2\) substitutions generate an Abelian group since the product of any two of them is of order 2. Hence \((p - 1)/2 = 2\), \(p = 5 \).†

Since the degree of \(I_i \) exceeds \((3p - 1)/2\) a substitution \(C \) similar to \(A \) can be found in \(G \) which connects \(I'_i \) and \(I''_i \), and introduces at most three letters new to \(I'_i \).

We take up \(I_{17}^{17} \) first. A transitive group of degree 17 and class 15 is triply transitive and has already been considered. It may be remarked that \(I_{17}^{17} \) cannot be included in a larger intransitive group of the same degree. Then \(I_2 = \{A, B, C\} \), if of degree 18, is of order 18 \(\cdot \) 60. This group cannot be primitive, as may be shown as follows. There are in \(I_2 \) 36 conjugate subgroups of order 5, each of which is invariant in a subgroup of order 30. By considering the transitive representation of \(I_2 \) on 36 letters it is seen that \(I_2 \) has one conjugate set of 6 subgroups of order 3, and since no operator of order 5 can be permutable with each of the 6 subgroups of order 3, \(I_2 \) is isomorphic to a multiply transitive group on 6 letters. Then \(I_2 \) has either an invariant intransitive subgroup or a regular invariant subgroup of order 18 containing negative substitutions. But \(I_2 \) is a positive primitive group by hypothesis. Since \(I_2 \) is generated by \(I_{17}^{17} \) and \(C \), it cannot be imprimitive. Continuing in much the same way the examination of the limited number of cases to which \(I_{17}^{17} \) and \(I_{18}^{18} \) lead, we reach the conclusion that the subgroup \(I_i \) of \(G \) is never intransitive.

If the transitive group \(I_i \) is of degree \(3p + 1 \) it is primitive of order \((3p + 1)p \). Here again \(p = 5 \), because of the condition \(3p + 1 = 2^n \). This well-known \(G_{18}^{18} \) is not maximal in a group of degree 17. If \(I_i \) is of degree \(3p + 2 \), the number of subgroups of order \(p \) in it is \((3p + 2)/2\), an absurdity. Let \(I_i = \{A, B\} \) be of degree \(3p + 3 \). Since any substitution of \(I_i \) which replaces one new letter by another must merely permute the new letters among themselves, \(I_i \) is imprimitive. There are \(p + 1 \) systems of 3 letters each. Since a system of three letters can be chosen in only one way, \(I_i \) leads to a

doubly transitive G^{3p+4} of order $(3p + 4)(3p + 3)p$ or $(3p + 4)(3p + 3)2p$. In G the Sylow subgroup of order p is invariant in a group in which the quotient-group is tetrahedral or octahedral. This is impossible.

There exist then only three primitive groups of class $3p$, p odd, containing a substitution of order p and class $3p$. These groups are of class 15 and order 80, 240 and 4080.