Contents of Volume 7, Number 2
HTML articles powered by AMS MathViewer
View front and back matter from the print issue
- On geometries in which circles are the shortest lines
- Carl Eben Stromquist
- Trans. Amer. Math. Soc. 7 (1906), 175-183
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500740-3
- A generalization of the notion of angle
- Gilbert Ames Bliss
- Trans. Amer. Math. Soc. 7 (1906), 184-196
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500741-5
- The square root and the relations of order
- Oswald Veblen
- Trans. Amer. Math. Soc. 7 (1906), 197-199
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500742-7
- The problem of partial geodesic representation
- Edward Kasner
- Trans. Amer. Math. Soc. 7 (1906), 200-206
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500743-9
- On the pentadeltoid
- R. P. Stephens
- Trans. Amer. Math. Soc. 7 (1906), 207-227
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500744-0
- The groups of order $p^ m$ which contain exactly $p$ cyclic subgroups of order $p^ \alpha$
- G. A. Miller
- Trans. Amer. Math. Soc. 7 (1906), 228-232
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500745-2
- Groups in which a large number of operators may correspond to their inverses
- W. A. Manning
- Trans. Amer. Math. Soc. 7 (1906), 233-240
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500746-4
- Finite projective geometries
- Oswald Veblen and W. H. Bussey
- Trans. Amer. Math. Soc. 7 (1906), 241-259
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500747-6
- On the analytic extension of functions defined by double power series
- W. B. Ford
- Trans. Amer. Math. Soc. 7 (1906), 260-274
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500748-8
- On quadratic, Hermitian and bilinear forms
- Leonard Eugene Dickson
- Trans. Amer. Math. Soc. 7 (1906), 275-292
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500749-X
- Die kinematische Erzeugung von Minimalflächen. I
- Paul Stackel
- Trans. Amer. Math. Soc. 7 (1906), 293-313
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500750-6
- A fifth necessary condition for a strong extremum of the integral $\int ^ {x_ 1}_ {x_ 0} F(x,y,y’)dx$
- Oskar Bolza
- Trans. Amer. Math. Soc. 7 (1906), 314-324
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500751-8
- A problem of the calculus of variations in which the integrand is discontinuous
- Gilbert Ames Bliss and Max Mason
- Trans. Amer. Math. Soc. 7 (1906), 325-336
- DOI: https://doi.org/10.1090/S0002-9947-1906-1500752-X