ON MODULAR GROUPS ISOMORPHIC WITH A GIVEN LINEAR GROUP

BY

H. F. BLICHFELDT

Theorem. Given a group G of linear homogeneous substitutions in n variables, transitive (irreducible) and of finite order. Then there exists an infinitude of prime numbers p for each of which we can construct a simply isomorphic transitive group G' of linear homogeneous substitutions in n variables, the elements of whose matrices are integers taken modulo p.

Let the operators of the abstract group G'' simply isomorphic with G be $S'_i, i = 1, 2, \ldots, N$. Write down N matrices in n variables with undetermined coefficients

$$S'_i = |a'_{jk}|,$$

and form the N^2 products $S'_i S'_j$. Writing $S'_i S'_j = S'_k$ whenever $S''_i S''_j = S''_k$, we obtain $n^2 N^2$ equations in the elements a'_{jk}. This system of equations shall be denoted by A. Any system of elements a'_{jk} satisfying A will furnish a linear group G_1 isomorphic with G''. That this group may be transitive in n variables we must, furthermore, have no equation of the form $\sum_{j, k} b_{jk} a'_{jk} = 0$ (i = 1, 2, \ldots, N),

the coefficients b_{jk} being independent of i. In other words, zero cannot be the value of every determinant of $(n^2)^2$ elements of the matrix of n^2 columns and N rows, the ith row of which is formed of the n^2 elements a'_{jk}. We shall denote by B' the system of equations obtained by equating to zero all the determinants mentioned. Furthermore, in order that G_1 may not contain two transformations that are identical, we must exclude all possible sets of solutions of A for which two rows of the matrix of $n^2 N$ elements just mentioned are identical. This condition expressed in analytical form is as follows: the expression

*Presented to the Society (Chicago), April 14, 1906. Received for publication February 13, 1906.

must not vanish for a set of \(n^2 \) arbitrary parameters \(\lambda_{jk} \). We shall modify the system \(B' \) by multiplying each of its equations by \(P \), and we shall denote the resulting set of equations by \(B \).

Now, because the transitive group \(G \) exists, the system \(A \) can be solved, and solutions exist which will not satisfy all the equations of \(B \). To solve \(A \) we may, by a well known process, form a normal equation of the system, an algebraic equation whose coefficients are integers and which has no double roots. Let this equation be

\[
F = a_0 x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0.
\]

Denoting by \(x \) any one of the roots of this equation, we can write every corresponding value of \(a_{jk} \) as an integral function of \(x \), the coefficients of which are definitely given rational numbers (the same for any root \(x \) of \(F \)) considered. Substituting in the system \(B \) we have a series of equations in \(x \) with rational coefficients, known functions of the parameters \(\lambda_{jk} \), which equations could not all be satisfied for every root \(x \) of \(F \). Hence \(F' = 0 \) has at least one root not found in one (say \(C = 0 \)) of the equations \(B \). Let us suppose \(F = F_1 F_2 \), where \(F_1 = 0 \) has no root in common with \(C = 0 \). Then we can construct an identity of the form

\[
a F_1 + b C = K_1 = 0,
\]

where \(a, b \) and \(b C \) are integral functions of \(x \) whose coefficients, as well as \(K_1 \), are integral functions of the parameters \(\lambda_{jk} \) with integral coefficients. To every root \(x \) of \(F_1 = 0 \) will correspond a transitive group \(G_x \) simply isomorphic with \(G' \).

The question whether or not there exists a transitive linear group in \(n \) variables simply isomorphic with \(G'' \) with coefficients modulo \(p \) can now be solved. We start as above with the \(N \) matrices

\[
S_i' = \left| a_{jk} \right|
\]

and write down all the congruences (mod \(p \)) following from the equations \(S_i' S_j' = S_k' \). The system \(A \) above will merely be replaced by congruences, and instead of \(F' = F_1 F_2 = 0 \) we will have \(F' = F_1 F_2 \equiv 0 \) (mod \(p \)). We remark that the coefficients of \(F, F_1 \) and \(F_2 \) are all known integers, although \(p \) is, as yet, not known. The elements \(a_{jk} \) are, as above, expressed as integral functions of a root \(x \) of \(F_1 \equiv 0 \) (mod \(p \)), the coefficients of which functions are known fractions. Let the least common multiple of all the denominators entering in these functions be denoted by \(M \). We shall replace the parameters \(\lambda_{jk} \) by such a system of integers that \(\overline{K} \) does not vanish. The resulting value of \(\overline{K} \) (an integer) will be denoted by \(\overline{K} \).
Suppose that $F_1 = b_n x^n + \ldots + b_0$. We may assume that $b_0 \neq 0$, as we may replace x by $x + h$. Let us substitute for x in $F_1 \equiv 0 \pmod{p}$ the quantity $MK b_0 y$. We obtain

$$b_0 \{MK(c_n y^n + \ldots + c_1 y) + 1\} \equiv 0 \pmod{p},$$

the coefficients of the left-hand member being known integers evidently not all zero.

If we substitute any integer y' for y such that

$$MK(c_n y'^n + \ldots + c_1 y') + 1 = L \equiv 1 \text{ or } 0,$$

and choose for p any prime factor > 1 of L, we have a modulus p fulfilling the conditions of the problem. For, p is prime to MK, and $F_1 \equiv 0 \pmod{p}$ has a solution $x = MK b_0 y'$. Accordingly, the system of congruences A is satisfied, but not the system B (by virtue of the identity $\alpha F_1 + \beta C \equiv K$).

Because A is satisfied, we have a modular group H isomorphic with G''. If this group is intransitive modulo p, it may be transformed into a group of type

$$\begin{array}{c|c}
H_1 & 0 \\
0 & H_2
\end{array},$$

from which it follows that the elements of H satisfy at least one system of congruences corresponding to (1), from which again would follow the system B, and therefore also $C \equiv 0 \pmod{p}$. Again, if H were not simply isomorphic with G, the factor P would vanish \pmod{p}, and therefore also every equation of B. But this is not the case, according to our procedure.

Berlin,

January, 1906.