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In a memoir by Scheffers, entitled Isogonalcurven, Aequitangentialcurven und

complexe Zahlen, which appeared in volume 60 of the Mathematische

Annalen (1905), p. 491, a number of theorems were demonstrated concerning

properties of the osculating circles of certain loci of line-elements in the plane.

Two of these may be cited here.    Given a differential equation of the first order,

(1) f(x,y,p) = 0,

in which p = dyfdx, and the one-parameter group

(2) x = x,        y = y,        arc tan p = arc tanp' + t,

by which each line-element is turned about its point through the same angle,

then the transformed elements satisfy the equation

./ P ' + tan T \

the integral curves of which are isogonal trajectories of the integral curves of

the original equation (1). The first theorem in question is now this: The

osculating circles of all the isogonal trajectories through a fixed point pass also

through a second fixed point, that is, form a pencil. Furthermore, these circles

will osculate at the second point another system of isogonal trajectories.

The second theorem is similar in character if the group (2) is replaced by

(4) aJ-ï+-rL=i,        y = y+1=t==,       p = P,

which  has  the  effect of  sliding each  line-element along its line the  same

distance t.    The integral curves of the transformed equation

are called by Scheffers aequitangential curves of the original system (1).   Then

•Presented to the Society, September 15, 1909, and February 26, 1910.
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the theorem holds: The osculating circles of the aequitangential curves which

touch a given line will touch also a second line. Furthermore, these circles will

osculate on the second line a second system of aequitangential curves.

The discussion of the present paper leads to similar theorems for loci of sur-

face-elements in space. Such loci are regarded as associations of element-bands,

and either of two species of simple bands — parabolic and cubic — appear in

the same role as osculating circles in the plane. The investigation is much

simplified by means of transformations which make the problem depend upon

projective geometry in space of five dimensions. This method has been employed

to advantage by Eiesland in a paper referred to below.

As far as the author is aware, the question of osculating element-bands is

discussed for the first time in this paper.

§ 1.  Preliminary Theorems.

Two united line-elements in the plane determine a unique curvature-element

(x, y, y, y"). For, given two such elements (x, y, y') and (x + dx, y + dy,

y + dy'), where dy = y dx, then if y" is defined by the equation dy = y"dx,

it is clear that the ratios dx : dy : dy' determine y" uniquely.

The case is different, however, with two united surface-elements in space.

For convenience we may adopt the notation (P, E) for such an element, P

being the point and E the plane of the element. Assuming two united ele-

ments (P, E) and (F, E') whose coordinates are (x, y, z, p, q) and

(x + dx, y + dy, z + dz, p + dp, q + dq), where dz = pdx + qdy, then of

the ratios

dx      dy dz dp      dq

(  ) ~ä = ~ß =pa + qß = ~J = T '

three are independent. On introducing the numbers r, s and t defined by the

equations

(2) dp = rdx + sdy, dq = sdx + tdy,

or also, from (1),

(3) 8 = ra + sß, e = sa + tß,

it is obvious that ?•, s,t ave not determined uniquely when the ratios (1) are given,

but that, in fact, we have the result : * Two united surface-elements in space deter-

mine oo' curvature-elements (x, y, z, p, q, r, s, t).

Consider now any surface to which the united elements under discussion

belong. The curvature of normal sections at P is, by the well-known formula,

given by
1 _ 1 rdx2 + 2sdxdy + tdy2

{2_B = ̂ T+=gqrq*~       ~tW~
*Engel, Die höheren Differentialquotienten, Leipziger Berichte (1893), p. 475.
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where ds is the linear element.    If we substitute r and t in terms of s from (3),

then (4) becomes

11 ßSdx2 + aedy2'- s(ßdx - ady)2

() B = Vl + p2 +7 ' " ~^ßds^~

in which of course, for any given value of dx: dy, s is arbitrary. We observe,

however, that the curvature is the same for all values of s when the normal sec-

tion is such that ßdx — ady = 0, that is, such that (1) is satisfied. The result

may be expressed as follows : The oo1 curvature-elements determined by two united

surface-elements ( P, E) and ( P', E' ) hang together along the direction PF in such

a manner that the curvature at P of all normal sections containing PP' is the same.

From equations (3), we readily find that

(6) aß(rt-s2) = -(aS + ße)s+Be.

If, then, aB + ße =f= 0, one of the curvature-elements has zero total curvature.

On the other hand, when aB + ße = 0, the total curvature of all the oo1 curva-

ture-elements is the same.

Finally, denoting by Bx : By the direction conjugate to dx : dy on any surface

containing the pair of elements under consideration, then the usual formula

rdxBx + s(dxBy + dyBx) + tdyBy = 0 gives by substitution from (3), and on

solving for 6x: By,

Bx ä edy + s ( ßdx — ady )

^ ' By~      ß Bdx — s ( ßdx — ady ) '

Hence if ßdx — ady = 0, the conjugate direction is the same for all values of

s, namely, BBx + eBy mm 0. In words : On all surfaces containing two united sur-

face-elements (P, E) and (P', E') the direction conjugate to PP' is the same.

This fact is obvious geometrically. For this common conjugate direction is

determined by the line of intersection of the planes E and E' of the united

elements.

Evidently, if aB + ße = 0, the conjugate direction is identical with PP', and

the latter direction is therefore an asymptotic direction. This fact when com-

bined with the conclusion found in discussing (6) gives the result: If the total

curvature of the oo1 curvature-elements (3) is the same, the direction along which

they are united is an asymptotic direction.

§ 2. Parabolic and Cubic Bands.

In the Differential Geometry of the plane, the circle plays a conspicuous rôle.

This fact, when metric properties are left out of consideration, is explained by

remarking that a circle is uniquely determined by two of its united elements.

Plainly, a curve of any family depending upon three parameters will have this



304 P. F. SMITH:    ON   OSCULATING  ELEMENT-BANDS [July

last property — vertical parabolas, for example. The point is that we consider

unions of line-dements which are determined when two united dements are given.

An analogous problem for space now arises. We wish to consider unions of

ool surface-elements each one of which is determined if two united elements are

given. Let the term element-band be used for a union of oo1 surface-elements.

Analytically an element-band is defined by

(i)   a>-as(í),      y = y(t),      *=-*(*)>      p=p(t),      q = q(t),

provided that z' = px + qy, where accents indicate derivatives with respect to

the parameter t.

Two species of element-bands, now to be described, appear in this paper.

The points of the elements lie on a curve, which may be called the point-locus,

while the planes form a developable, called the plane-locus. The two species of

element-bands may be respectively named parabolic bands and cubic, bands.

The point-locus of a parabolic band is a parabola whose axis is parallel to the

Z-axis. The plane-locus is a parabolic cylinder. To conceive such a band we

may think of such a parabola, which may be called a vertical parabola then

imagine a line meeting the parabola to generate a cylinder, and finally picture

to ourselves a narrow band of the cylindrical surface along the parabola.

Clearly, oo2 parabolic bands may have a common point-locus or dually, the same

plane-locus. To dwell for a moment on the last point : — the parabolic cylinders

in question obviously contain the point at infinity on the Z-axis. Given such a

cylinder, then any plane through the point referred to determines on the cylinder

a parabolic band.

The point-locus of a cubic band is a skew cubic. The plane-locus is a quad-

ric cone whose vertex lies on the cubic. Clearly there are oo1 cubic bands with

a common point-locus. On the other hand, the multiplicity of the system of

cubic bands belonging to a quadric cone is the same as that of the system of

skew cubics lying on it, and is of no special importance at this moment. The

concept of a cubic band is readily visualized if we think of a skew cubic, picture

any quadric cone standing on it and think of a narrow band of the conical

surface along the cubic.

The fact is now readily established that a parabolic band is determined

by two of its united elements, (P, E) and (7*, Tí'). For pass through PP'

the plane parallel to the Z-atàs. The united line-elements in this plane deter-

mined by its intersection with E and E' determine a vertical parabola. Further,

the line of intersection of E and E' gives an element of the parabolic cylinder.

The multiplicity of all parabolic bands is obviously seven-fold. For there are

oo8 pairs of united elements and oo1 elements determine the same parabolic

band. The important exceptional case already noted — when E and E' inter-

sect along PP — leads to a twisted band.    Namely, the point-kvjs is now the
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line PF and the planes of the plane-locus pass through PP'. The points and

planes of the elements of the band are in a protective relation, such that P and

E, F and E' are corresponding elements, and moreover, the point at infinity on

PP corresponds to the vertical plane through PP'.

Turn next to the question of the determination of a cubic band by a pair of

united surface-elements. From the results of § 1, it is clear that the vertex

of any cone to which the united elements (P, E) and (P\ E') belong, must

lie on the line of intersection of E and E'. For this direction is conjugate

to PP, and for the present we assume these directions are not identical.

Denote the line of intersection of E and F by (E, F). Let us now confine

ourselves to quadric cones. Consider the normal section of such a cone through

the direction PP'. Then by § 1, the curvature of this conic at P is given.

Consequently three conditions are imposed upon this conic. It is therefore

clear that oo3 quadric cones may contain the same pair of united elements.

The cones touch along a common element (E, E') and in addition, their normal

sections through PP' osculate at P. To obtain a unique cone of this system

we may introduce the three fixed conditions — the cones shall pass through three

non-collinear fixed points A, B and C. It is easy to see that the required cone

is now uniquely determined. For, in the first place, its trace c on the plane of

A, B and C is determined. Secondly, the normal section through PP' now

has tibo points given on this trace c, and hence is a unique conic c". Only one

cone with a given element can contain two conies.

We see, therefore, that a pair of united surface-elements ( P, E), ( P', E' )

will determine a unique quadric cone F standing on three fixed points A, B,

C. Let the vertex of this cone be V. Consider the quadric cone whose vertex

is A which stands on the five points P, P, V, B and C. Its intersection

with the first cone is a skew cubic C3 and the element VA. Similarly each of

the fixed points B and C is the vertex of a quadric cone which will contain the

same cubic. The cubic band lying on F along C3 contains (P, 7Í) and

(F, F ) and furthermore is uniquely determined by them.

The multiplicity of skew cubics passing through three non-collinear fixed

points is six-fold. There are accordingly oo7 cubic bands, oo1 on each of the

skew cubics of the system. On the other hand, on each quadric cone standing

on the fixed points A, B and C lie oo2 cubic bands, and the multiplicity of such

cones is five-fold.

If the line of intersection of the planes E and E' is identical with PP', the

cubic band is constructed by assuming E as the osculating plane at P, and PP',

of course, as the tangent. The cubic satisfying this condition and moreover

passing through A, B, and C is unique.   The cone F then has its vertex at P.
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§ 3.  Osculating Bands.

Two element-bands having in common two united elements may be said to

osculate.    The analytical conditions are easily derived.    For given two bands

»-/(0.      y = g(t),      z = h(t),     p = cb(t),      ? = *(«),
and

x=fAt)' 2/=5,,(0> z = hx(t),        p = <bx(t), q = Xl(t),

then osculation demands the equality of / and /,, g and gx, etc., and their first

derivatives for some value of t. In these conditions, however, the relation

h' = h[ depends upon the others from the conditions for bands, (1), § 2.

Geometrically, two element-bands osculate when their point-loci touch and

their plane-loci are tangent along a common generator.

The immediate subject of investigation concerns properties of surface-element

loci with respect to osculating parabolic or cubic bands. It is clear that there

are oo1 bands of this character associated with any element-band. Further,

given any surface or union of oo2 elements, then oo3 osculating parabolic or

cubic bands are determined. Of particular interest, however, is the case when

the surface-element locus is defined by a partial differential equation of the first

order

(1) f(x,y,z,p,q) = 0.

The oo4 elements satisfying (1) are arranged on oo3 bands, the characteristic

bands. If the coordinates of tsvo united elements of a characteristic band

are (x, y, z, p, q) and (x + dx, y + dy, z + dz, p + dp, q + dq), then these

coordinates of course satisfy f = 0 and further the well-known equations due

to Lie,

(2) dx = dy_dz _  =       dp        =_dq_

u /„""/, ~pfP + qfa~-L-pf,==-f,-qf.'

Each element satisfying (1) is associated with a united element determined

by (2) such that the pair of united elements lie on a characteristic band. Now,

clearly, the parabolic or cubic band determined by this pair of elements will

osculate the characteristic band. Thus at each element of the locus (1), there

is determined a parabolic or cubic band which osculates the characteristic band

containing the given element. There are oo4 osculating parabolic or cubic

bands. If, now, we look upon the locus of (1) not as a set of integral surfaces,

but as an association of oo3 element-bands, the characteristic bands, then the

properties of osculating parabolic or cubic bands appear a natural subject for

investigation. The oo4 parabolic or cubic bands, which osculate the character-

istic bands of a given differential equation of the first order we shall refer to

briefly as the osculating parabolic or cubic bands of the locus of the equation.
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§ 4.  Transformation of the Problem.

The investigation of the question proposed in the preceding section is greatly

facilitated by the aid of transformations by which the geometry of surface-ele-

ments is made to depend upon projective geometry in a space of five dimensions

B.. Such a transformation has been given by Lie.* A second transformation

is exhibited in § 7 of this paper. The capital point is that parabolic or cubic

bands correspond by these respective transformations to straight lines in B5.

To disclose the details, we begin by examining the transformation already

referred to as due to Lie.    This is defined by the equations

(1) Xx = x,        F2=y,        Yx = \p,        Y2 = lq,        Z=z — \px-\qy,

by which identically

(2) dZ + Xx dYx - YxdXx + X2d Y2 - Y2dX2 =dz-pdx - qdy.

If we interpret (Xx, X2, YX,Y2,Z) as cartesian point coordinates in B5,

then clearly united surface-elements in ordinary space R3 transform into line-

elements in 725 satisfying the equation

(3) dZ+ XxdYx - YxdXx + X2dY2 - Y2dX2 = 0.

Now equation (3) is the differential equation of the null-system,\

(4) Z-Z'+YxX[-XxY'x + Y2X2-X2Y'2 = 0,

that is, of a correlation in Bb such that point and corresponding linear MA are

incident.

4l line in B5,

(5) Xx = X°x + \t, X2=X\ + \2t, Yx = Y\ + pxt, Y2 = Y\ + p2t, Z=Z° + vt,

whose elements satisfy (3), that is, such that

(5') v + pxXx-\Yx + u2X2-\Y2 = 0,

is a null-line.    There are plainly oo7 null-lines.

By this transformation (1), the null-line in B5 becomes in B3 an element-band.

This is a parabolic band, as shall now appear. Transforming (5), we obtain for

the equations of the corresponding band, using (5'),

x = x° + \xt,       y = y°+\t,       z = z0 + (\y + \q°)t + (\px + \u2)t2,

(6)
p=p°+2uxt, q=q«+2p2t.

The point-locus of this band is, in the general case, a vertical parabola.J    The

* Lie-Engel, Transformationsgruppen, vol. 2, p. 521.

t For details, see Eiesland, On Null-Systems in Space of Five Dimensions, etc., American

Journal of Mathematics, vol. 26 (1904), p. 103.

t Eiesland, 1. c., p. 120.
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plane-locus is the envelope of

(7) z'-z = p(x' — x) + q(y' — y),

in which x, y, z, p, q, have the values in (6). On substituting their values in

(7), the equation takes the form

(8) (\px+\2p2)t2-2[px(x'-x'>) + p2(y'-y'>)]t+z'-z'>-p\x'-x'>)-q\y'-y0) = 0.

The envelope of (8) is clearly, in the general case, a parabolic cylinder. The

band (6) is accordingly a parabolic band. Certain exceptional cases are neces-

sary for the following discussion.

1. If X, = X2 = 0, then (6) becomes x = x°, y = y°, z = z°. That is, the

point-locus is a point. The oo1 surface-elements now form a hinge, for the planes

(8) form a pencil.

2. If Xj px + X2/*2 = 0 and X, 4= 0, X2 ̂  0, the point-locus is a line and the

plane-locus a plane-pencil. The band is now a twisted band, the points and

planes of the element forming a projective series.

3. If px = p2 = 0, the band just discussed becomes flat, that is, a straight

band on a plane.

It is clear from these results that the contact geometry of parabolic bands in

B3 becomes under the transformation (1) the projective geometry of a null-system.

The group of the latter is easily found to depend upon 21 parameters.*

In later sections it will be shown that the null-lines (5) are by another trans-

formation changed into cubic bands, and finally that parabolic and cubic bands

correspond under a contact transformation.

§ 5.  Theorems on the Null-System in B5.

Certain theorems regarding the null-system

(1) Z- Z' +YXX[- XXY'X + Y2X'2 - X2Y'2 = 0,

necessary in the sequel, are discussed in this section.

The plane in B5

(2) Yx = axXx+a2X2+as,       Y2=bxXx+b2X2+b3,       Z=cxXx+c2X2+c3

will contain the null-line (5), § 4, if in addition to the obvious conditions that

the point ( X°x, X°2, etc.) lies on (2), we have

(3) px = ax\ + a2\2,        u2 = bx\+ b2X2,        v = cx\ + c2X2.

On substituting in the condition (5'), § 4, for a null-line, the single condition

is obtained

(4) [cx-a3 + (bx-a2)X<>2]\x+[c2-b3 + (a2-bx)Xl]\2=0.

* Eiesland, 1. c, p. 142.
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The following conclusions are now apparent :

1. Through an arbitrary point in an arbitrary plane in Bs there is one null-

line.

2. All lines in the plane (2) through the point determined by

(5) x; = ̂ =-J,     x» = ̂ -£,
W a2~bX a2~bX

ave null-lines.    This point is the null-point of the plane.

3. If a2=bx, b3 = c2, cx = a3, then every line in the plane is a null-line.

The plane (2) is now a null-plane. The conditions obviously demand symmetry

in the determinant of the right-hand members in (2). Explicitly, the equations

(2) take the form, if the plane is a null-plane,

(6) Yx = axXx + a2X2+a3,       F2 = a2X, + 62X2-|-c2,        Z=a3Xx+c2X2+c3.

If we next inquire how many null-planes contain a given null-line, the answer

is immediate, namely, each null-line is the axis of a pencil of oo1 null-planes.

Clearly, all planes in B5 cannot be represented in the form (2). The two

exceptional cases are, for null-planes, given by

(7) Xx = a,        X2 = b,        Z=c3-aYx-bY2,

and

(8) Xx = aX2 + b,        Y2 = cX2-aYx + e,        Z=eX2-bYx + h.

We may, in general, define a null-surface * in Bs as one whose tangent planes

are null-planes.

Turning now to the locus of one equation

(9) F(Xx,X2,Yx,Y2,Z) = 0,

defining in Bb a manifoldness lf4 of four dimensions, the linear tangent M\ is

given as usual by

FXx(X[ -Xx)+ FXi(X'2 - X2) + FYi(Y[ - Yx)

(10) + FY,(Y'2-Y2) + Fz(Z'-Z) = 0.

The null-plane (6) will pass through the point of contact (Xx, X2, etc.) and

lie entirely within the locus of (10) under these conditions:

(11) a3=Yx—axXx—a2X2,       c2=Y2—a2Xx—b2X2,       c3=Z—a3Xx—c2X2,

(12) FXl + axFYl + a2FYí + a3Fz=0,        Fx¡ + a2FTl + b2FYt + c2Fz=0.

There is no difficulty in showing that the oo1 null-planes satisfying (11) and

(12) form a pencil whose axis is the null-line for which

dXx dX2 dYx dY2 dZ
(13)

FYl - XxFz~FYi - X2F~ -Fx- YXFZ--FY- Y2F~ 2XPy

'- For a development of this idea, see Eiesland, 1. c, p. 128.
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the denominator ~LXFX containing the four terms corresponding to Xx, X2,

Yx, Y2.    We may express this important result as follows :

At each point of an MA in B5 there is a pencil of tangent null-planes whose axis

is the null-line (13).

The null-37} of P contains every null-plane through P. Hence the result

just found may be.formulated thus :

The tangent M\ and null-M\ of P intersect in a pencil of null-planes.

We shall call the axis of this pencil the tangent null-axis at P.

The result just stated is fundamental for the sequel. It is clear that the

tangent null-axis at any point on the locus of (9) is distinguished from all other

tangent null-lines, of which there are of course oo2.

Returning to the plane (2), we may represent this for the moment by the

symbol (abc) of the determinant on the right-hand members. As already

pointed out, if (abc) is symmetrical, the plane is a null-plane. In the null-

system (1), let the point (Xx, X2, etc.) describe the plane (abc). Then it

appears at once that the oo2 corresponding M\'a intersect in a plane whose

symbol is the conjugate of (abc). Such planes we may call conjugate planes in

the null-system.    Clearly, a null-plane is self-conjugate.

In the null-system (4), to every point corresponds a linear Mt. Dually, to a

given linear Mt will correspond a point, the null-point of the Mt. This fact

leads to the determination of the locus of the null-point of the linear tangent 3I4

given by (10). To find this null-point P0(X% X\, Y\, Y\, Z"), we merely

have to compare equation (10) with the equation of the null-system

(14) Z- Z° + YXX\ - XfY\ + Y2X\ - X2Y\ = 0.

The result is readily found to be

yo__2j yo_£_5 y>_ ___£> y>_ _    xt

Vz ' *~ Fx* » Fa* 2~      Fz'

F,FXi + X2 FXí + YXFY¡ + Y2 Fr,
(15)

Z° = Z +

When the point P(XX, X^, Yx, Y2, Z) describes the locus of (9), the point

P°, which we call the conjugate point, will describe a locus, which may be named

the conjugate locus. In the general case, the conjugate locus will be of four

dimensions, say F° = 0. Evidently, from the definition of the conjugate locus,

it is derived from the original locus by the correlation established in R5 by the

null-system. In this correlation each null-plane is invariant. Hence the pencil

of null-planes tangent to F = 0 at P must have the same relation to the conju-

gate locus at P°. In other words, the relation between two conjugate loci is

mutual.    The linear tangent Mi and the null-37} at P to F = 0 are respectively
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the null-M\ and linear tangent Mt to F° = 0 at F. From the theorem on tan-

gent null-planes at P, we now derive the important

Theorem. If the loci of F = 0 and F" = 0 are conjugate under a null-

system in Bif and if P and P° are corresponding points on these loci, then the

oo' null-planes tangent to F'= 0 at P are tangent also to F"= 0 at P. Further,

the tangent null-axes at P and P" are identical.

Analytically, the general case arises when the tangent M\ (10) contains four

independent parameters. The null-point P0 will then describe a four dimen-

sional locus. If, then, the number of independent parameters in (10) is less

than four, the locus of P0 will be of three dimensions, or of two (a surface) or of

one (a curve). All these cases will be covered if we consider the " envelope " of

the linear M^,

(17) E=AXXX + A2X2+ BxYx + B2Y2+CZ=0,

in which the coefficients are functions of certain parameters in number less than

four. For example, consider the case of two parameters u and v. Taking the

first partial derivatives of (17) with respect to these parameters,

(18) Eu = 0    and    Ev=0,

we see that the tangent null-axes at all the points in the plane E=Eu=Ec=0 pass

through a common point, the null-point of E= 0. Thus the oo4 tangent null-

axes form in this case oo2 bundles. The two other special cases mentioned are

clearly those in which the tangent null-axes form oo3 flat pencils or oo1 three-

dimensional fascicules. In the former of these two cases, that of three parame-

ters, the points of tangency of the axes of a pencil lie on a line.

§ 6.   Geometry of Osculating Parabolic Bands.

The results found in the previous section are now to be interpreted in space

of three dimensions by means of Lie's transformation used in § 4,

(1)    Xx = x,        X2=y,        Yx = \p,        Y2=\q,       Z=z-\px-\qy.

We obtain first some preliminary theorems. To any line in B5 not a null-

line, will correspond in 7i'3 a surface-element locus, for which

(a) the point-locus is a vertical parabola,

(b) the plane-locus is a parabolic cylinder.

These results follow directly as in § 4, the distinction being that the condition

for a null-line simply implies that the point-locus is on the plane-locus.

To any plane in 7¿5 [(2), §5] will correspond in R3 a locus of oo2 elements,

with the properties

(a) the point-locus is a vertical paraboloid,

(6) the plane-locus is a second vertical paraboloid.



312 P. F. SMITH:   ON  OSCULATING ELEMENT-BANDS [July

In fact, the plane

(2) Yx = axXx+atX2+a3,       Y2 = bxXx+b2X2+b3,      Z=cxXx+c2X2+cs,

gives under (1) as the point-locus,

(3) z = axx2+ (at+ bf)xy + b2tf + (as + of)x + (6, + c2)y + c,.

The statement (6) leads to a simple envelope problem.

The paraboloid (3) is the point-locus of oos assemblages of oo2 surface ele-

ments, namely, for all such that a2 + bx, a3 + cx, and b3 + c2 are constant. One

and only one of these assemblages is a union, namely, when a2 = bx, as = c,,

b3 = c2, and in this case, the union consists of the elements of the paraboloid.

Remarks of like character apply to the plane-locus.

The theorems 1 and 2 on page 309 enable us to state these properties of the

point-locus or the plane-locus : The oo2 surface-dements are arranged in oo1 para-

bolic bands having a common element which belongs to both point-locus and plane-

locus. The point-locus and the plane-locus touch on this element. Two conjugate

planes in Bs have the same point-loci and the same plane-loci.

To the null-plane

(4) Yx = axXx + a2X2 + as,     Y2 = a2Xx + b2X2 + c2,     Z=asXx+c2X2 + e3

correspond the oo2 surface-elements of the paraboloid

(5) z = axx* + 2a2xy + b2y2 + 2a3x + 2c2y + c,.

If axb2 = a2, the locus of (5) is a cylinder. That is, the oo2 parabolic bands

of the locus have now the same plane-locus. Obviously, equation (5) gives also

all planes as a special case.

The special null-planes (7) and (8) of § 6 yield in B3 the following results.

The null-plane

(6) Xx = a,       X2 = b,       Z=aXx + bX2 + c,

gives the oo2 elements of the point (a, b, c).    To the null-plane

(7) Xx = aX2+b,        Y2 = cX2-aYx+e,        Z=eX2-bYx + h,

correspond the oo2 elements of the vertical parabola*

(8) x — ay + b,        z = cy2+ 2ey + h.

The discussion shows that the oo2 surface elements of a point or a plane, or of

a vertical parabola, or of a parabolic cylinder, correspond to the points of a plane

inP6.

In the previous section it has been shown that a null-line is the axis of a

pencil of null-planes. The corresponding result for space of three dimensions is

this:

* Eiesland, 1. c, p. 121.



1910] ASSOCIATED  WITH  LOCI  OF  SURFACE-ELEMENTS 818

A parabolic band lies on oo1 vertical paraboloids.

The connection of these facts with the discussion of § 1 is simple. The point

(Xx, X2, etc.) in P5 gives a surface-element in B3. A consecutive point on a

null-line in B3 gives a united element. Through the point-pair in Bs pass oo1

null-planes. The point (Xx, X2, etc.) and each null-plane determine a curvature-

element in P5. For clearly, in addition to x, y, z, p, q determined by (1), we

now have given in (5), r = %ax, s = \a2, t = \b2. Thus the oo1 null-surface-

elements in Bs having a common null-axis correspond to oo1 curvature-elements

with a common pair of united surface-elements.

The null-plane in Bs transforms into an element union in B3. More gen-

erally, any null-surface will transform into an element union — surface or curve.

The locus of

(9) F(Xx,X2,Yx,Y2,Z) = 0

transforms into the partial differential equation of the first order

(10) f(x,y,z,p,q) = 0.

The partial derivatives of (9) transform as follows :

FXl -/. + ipf. »        Fx, -/, + ig/.,        Fz =ft,

FY=2fp + xf,        FYl = 2fg + yfz.

Any null-surface lying entirely in (9) transforms into an integral surface of

(10).
Now consider the pencil of tangent null-planes to (9) at any point, and the

corresponding null-axis. Each of the oo1 corresponding vertical paraboloids

will have in common with (10) a curvature-element, and the oo1 curvature ele-

ments thus arising will hang together on two united surface-elements. Hence

the null-axis transforms into a parabolic band which osculates a characteristic band.

This result is verified by transformation of the equations (13), § 5. For by the

equations of the transformation (1) and (11) we obtain immediately,

dx      dy \dp \dq dz

WP=%=-f*-Vfr -/„- ?/.= 2 W, + 9/,)'

that is, the equations (2) of § 3.

We may at once write down the equations of the parabolic band osculating

the characteristic band of (10) at (x, y, z, p, q). They are ((6), §4), since

\, \t Pi* H now satisfy (13) of § 5,

x' = x+2fpt, y' = y + 2fqt,

(12) P=p-2(fx + pf,)t, q=q-2(fy+qf.)t,

z' = z+ 2(pfp + qfq)t - 2 [fxfp +fjt +f(pfp + qfq)]t2.
Trans. Am. Matb. Soc. »1
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The exceptional cases noted on page 308 lead to the following results.

1. lff=f=0, the osculating parabolic bands are hinges. The differential

equation now contains no partial derivatives and its locus consists of all surface-

elements of the points of the surface f(x, y, z) = 0.

2. If fjr +fjt+f(pfp+qfq) = 0 by virtue of/= 0, the osculating bands

are twisted bands. The characteristic curves are now asymptotic lines on all

integral surfaces of f(x, y, z, p, q) = 0. In fact, as explained in § 1, the

direction PP' of the united elements of the band is now an asymptotic direction.

3. If fx + pfz =f + qfz = 0, that is, if the differential equation is of the

form f(z —px — qy, p, q) mm 0 , the osculating bands are flat.

Returning to 2, we see that the fact that the osculating bands are twisted

states a necessary and sufficient condition that the characteristic curves shall be

asymptotic lines on all integral surfaces. In this case, Lie has shown that the

point-loci of the oo4 bands reduce to oo3 lines, that is, oo1 bands have the same

point-loci. The general question may be asked :—when do the oo4 osculating

parabolic bands arrange themselves in oo3 systems of oo1 bands having a common

point-locus f    This general problem includes the case just discussed.

If we write the equations (12) in the form

then

x=ay + b,        z = cy2+2ey + h,

JJp+ fyjq + Sz (Pfg + qfg )
(is) amf*+f*   6=*-a2/'   G=-*        /:

e=l(pa + q),        h=z — cy2—2ey.

The oo4 elements satisfying/= 0 lead by these formulas to the point-loci of

the osculating parabolic bands. The analytic question is, therefore, when does

the elimination of x, y, z, p, q from (13) and /= 0 lead to more than one equa-

tion in the a, b, c, e, hi Without answering this question in all generality, it

is not difficult to show that any one of the following is a sufficient condition : —

1. Either a or c constant;

2. A functional relation between a and c.

An interesting case under 2 arises when

(13a) c=k(l + a2).

The oo4 osculating parabolic bands now lie on oo3 congruent vertical para-

bolas. The characteristic curves on all integral surfaces have the property ex-

pressed by the equation

(136) dpdx + dqdy = k(dx2 + df).

Conversely, the condition (136) is sufficient for the property of the osculating

vertical bands (13a).    Evidently k = 0 gives the tase 2
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The equations (15) of the previous section become in space of three dimen-

sions the transformation

(14)

x + 2f-f,        y'=y + 2f-f,        p'=-p-2f-f,
J z J z J z

i „       o Jy _' o JpJx "■" JqJy
q=—q — ¿^, Z=Z — ¿s: i

Given any element of the locus of /= 0, equations (14) define an element

(x, y, z, p, q), which we call the conjugate element. Elimination of x, y, z, p

and q from /= 0 by means of (14) will lead to the locus of the conjugate ele-

ment—called the conjugate locus. In the general case, this elimination will

give a single equation

(15) f'(x',y',z',p',q') = 0.

The theorem of the preceding section now gives the interesting result.

Theorem. Given a partial differential equation of the first order. The oo4

parabolic bands which osculate the characteristic bands will in general osculate

also the characteristic bands of a second partial differential equation of the first

order which may be found by differentiation and elimination.

The geometric relation between conjugate equations is simply this : The ele-

ments are grouped in conjugate pairs which belong to a parabolic band oscula-

ting the characteristic bands of both equations. The given equation may, of

course, be self-conjugate, that is,/= 0 and/' = 0 may be identical. The equa-

tion ff = 0, where f=0 and f' = 0 are conjugate, offers a case of this kind.

If the characteristic curves are asymptotic lines on all integral surfaces of

/= 0, that is, if the osculating parabolic bands are twisted bands, then the

characteristics of /' = 0 have the same property. More generally, if the prop-

erty (15) is possessed by the characteristics of /= 0, it holds also for those of

/'-0.
Referring to the equations of the osculating band (12) we see that the conju-

gate element (14) is obtained by setting the parameter t equal to 1 ■+•/.

The preceding discussion assumes that f =j= 0, that is, that the given equa-

tion (10) contains z. It this is not the case and if one of the other variables

x or y appears in the equation, say x, we merely need to write in (10)

p = 1 -i- dx/dz, q mm — dx/dy -=- dx/dz, and then interchange x and z. The

case when neither x nor y nor z appears is excluded.

The exceptions to the theorem, p. 311, are readily characterized by the aid of

the results given at the close of the preceding section. Transforming (16)

of that section by (1) gives an equation which may be written

(16) Axx + A2y + Bxp + B2q + C(z - \px - Igy) + D = 0.
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in which the coefficients Ax, A2, etc., are functions of one, two or three param-

eters. The exceptional differential equations result, then, by forming first

partial derivatives of (16) with respect to the parameters and then eliminating

these, using (16). The following properties of the osculating parabolic bands

characterize these differential equations.

Three parameters. The oo4 parabolic bands osculating the characteristic

bands form oo3 families of oo1 each. The oo1 bands of a family osculate the

characteristic bands at points lying on a vertical parabola and have a common

surface-element.    The latter, oo3 in all, constitute the conjugate locus.

Two parameters. The oo4 osculating parabolic bands now form oo2 families

of oo2 each of this sort: the oo2 bands of a family have a common surface-

element and osculate the characteristic bands at points lying on a vertical

paraboloid. The conjugate locus consists of the oo2 common surface-elements of

each family.

One parameter. The oo4 osculating parabolic bands are arranged in bo1

families of oo3 each such that all of one family have a common surface-element.

The conjugate locus is made up of these latter elements, oo1 in all.

The facts here assembled follow at once from the conclusions at the end of

§ 5 and the results established in the present section.

An interesting theorem in regard to any locus of oo2 surface-elements

(17) x = x(t,v),        y = y(t,v), ■■■,        q = q(t,v)

is obtained by the following considerations. The corresponding locus in 7?5 is

a surface S. Consider the tangent plane to this surface S at a point P.

Through P and the null-point [(5), § 5] P' of the tangent plane passes a null-

line. Thus at each point of S we determine a tangent null-line, and hence on

S a system of oo1 null-curves. Each null-curve corresponds to an element band

satisfying (17).    Hence the

Theorem. Every locus of oo2 surface-elements in space may be arranged

in ool bands.

The locus of the null-point P' is a surface S' (if S is not a developable).

Moreover, it is easily seen that the osculating plane of the null-curve at P is the

tangent plane to S' at P'. Further P is the null-point of this plane. Hence

the relation between S and *S" is mutual. The oo2 null-lines touching the null-

curves on S touch also the null-curves on S'.    This result gives for space the

Theorem. Given an assemblage A of oo2 surface-dements in space. The

oo1 bands in which these may be arranged determine oo2 osculating parabolic bands

which in general osculate also the oo1 bands of a second assemblage A' of oo2 sur-

face-elements.

It appears, then, that assemblages of oo2 surface-elements in space are arranged

in conjugate pairs, as the relation of A and A' may be named. If A is a union,

then A' is identical with A.
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The equations of A' are given directly by (17) when we substitute from (17)

in the right-hand members. An exception to the theorem arises when S is a

developable. The osculating parabolic bands are now arranged in oo1 families

of oox each, the bands of a family having a common element and osculating the

bands of the assemblage A in points lying on a vertical parabola. The assem-

blage A' consists of a locus of oo1 elements.

In preparation for certain final theorems in this section we now change the

surface-element coordinates as follows. Write the equation of the plane of the

element thus :

(18) Z=uX+ vY"—w,

and take for the new coordinates of (P, E), u, v, w, a, ß, the latter satisfying

dw — adu — ßdv = 0.    Then we readily find the relations

(19) u = p,        v = q,        w=z—px—qy,        a = —x,        ß = —y,

between the old and new element-coordinates.    The equations (12) of the para-

bolic band now become, if we assume that by (19),

(20) f(x,y,z,p,q)=g(n,v,w,a, ß),

as follows :

u' = u+2gj, v' = v + 2gßt,

(21) a' = a-2(gu+agjt, ß = ß- 2(gv + ßgjt,

w' = w+2(ag^+ßgß)t-2 lguga + gv9ß + g„(aga + ßgß )] t2.

The equations of the Osculating parabolic band have, therefore, precisely the

same form in the new coordinates. Furthermore, the same remark applies to

equations (17) giving the coordinates of the conjugate element.

Let us now turn our attention to the question of trajectory-bands of a given

differential equation

(22) f(x,y,z,p,q) = 0.

Given a two-parameter group

x = x,        y=y,        z = z,        p = tj>(x,y,z,p,q; tx,tf),

q = x(x,y,z,p,q-> <i><i)>

by which the element (P, 7Í) is turned about its point, then substitution in

(22) leads to the transformed equation

(23) f(x,y,z,p,q; tx,t2) = 0,

the characteristic bands of which for constant values of tx and t2 may be called

trajectory-bands of f = 0.
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The case of interest in this connection is associated with the simple transfor-

mation of the above form when

(24) P=P + tx, q=q + t2.

Referring to the formulas (14) for the conjugate element, we easily see that

the conjugate elements of (x, y, z, p, q) and all its transformed elements

have also a common point (x, y, z). For the coordinates x, y and z depend

upon the partial derivatives of / = 0 and these are invariant under (24). We

see further from (14) that the conjugate elements are transformed by

(25) p'=p-t^     q' = q-t2-

Hence if f(x, y, z, p, o) = 0 and f'(x, y, z, p', q) = 0 are conjugate

equations, so also are

f(x,y,z,p + tx,q + t2) = 0    and   f'(x, y',z',p — tx, q —t2) = 0.

It may be permitted to enlarge upon the geometrical aspect of the facts just

presented. Each element (P, E) of /= 0 is turned about its point P by the

transformation (24), and each of the oo2 systems of elements thus obtained is

then arranged in the characteristic bands of the corresponding differential equa-

tion (23). It is to be noted that the characteristic bands of/= 0 do not trans-

form into those of the new equation, for (24) is not a contact transformation.

If, now, we consider the osculating parabolic bands at (P, E) and at each of

its oo2 transformed elements, these bands will have in common a second point

which is common to all the conjugate element

A discussion precisely similar applies when the other element coordinates

u, v, w, a.. /S of (19) are employed. Namely, each element is now displaced in

its own plane by the transformation

(26) a = 5 + o-1,        ß = ß + cr2,

the other coordinates u, v, w remaining constant. Then the conjugate elements

of (u, v, w, ä, ß) in the transformed equation, for every trx and er2 will also lie

in a common plane, namely, the plane of the element (u, v, w, d, ß1) which is

conjugate to the initial element (u, v, w, a, ß). Furthermore, the conjugate

elements satisfy the equations a' = a — a , ß'= ß'— cr2.

The transformation (26) in the usual coordinates (x, y, z, p, q) takes the

form

(27) x = x-erx, y = y-tr2, z = z -pcrx — qcr2,

the coordinates p and q remaining constant. Evidently each element is dis-

placed in its own plane in such a manner that the displacement parallel to the

ATF-plane is the same for all elements.

Recapitulation of the results found may be made in the following form :
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Theorem.    Let each surface-dement (P, E)(x, y,z, p, q) satisfying the

differential equation

(10) f(x,y,z,p,q) = 0,

be turned about its point in such a manner that it becomes the dement (P, E')

(x, y, z, p — tx, q — tf), where tx and t2 are arbitrary constants. Then the

transformed elements satisfy the equation

f(x, y,z, P + <i> g + <2) = 0>

and the osculating parabolic bands of (P, E') for every tx and t2 pass through a

second common point,

x = x + -^,      y = y+-f,      z = z — 2JP-'   .   —,
J. J, /«*

namely, the point of the conjugate dement of (P, E) in (10).

Again, let each dement ( P-, E) be moved in its plane so that the transformed

element is (P', E)(x + crx, y + cr2, z + perx + qcr2, p, q), where erx and er2 are

arbitrary constants.    The new dements satisfy the equation

f(x-crx, y-tr2, z-perx-qcr2, p, q) - 0.

The osculating parabolic bands of (F, E)for every crx and cr2 touch a second

common plane, namdy the plane of the conjugate dement of (P, E) in (10).

We may if we so wish consider this theorem as establishing on the parabolic

band which osculates a characteristic band at (P, E) the conjugate element.

Clearly, as far as the theorem is concerned, the relation of any equation to its

conjugate is a mutual one, that is, the new parabolic bands introduced are the

same for both equations.

Attention may be called to the fact that the oo2 parabolic bands issuing from

the point (x, y, z) which arise in the first part of the theorem, lie on oo1 para-

bolas, namely, the parabolas through (x, y, z) and the point of the conjugate

element. Similarly, the oo2 bands referred to in the second part lie on oo1

parabolic cylinders.

One final question may be answered. If we start with any element (a;, y, z, p, q)

satisfying (10), the transformation of the theorem leads to oo2 elements at the

point (x,y,z). Further, each of these determines a parabolic band, that is, with

each is associated a united element. Hence from the discussion of § 1, since

each band determines at (x, y, z) oo1 curvature elements, we see that from the

element (x, y, z, p, q) ave derived oo3 curvature elements (x, y, z, p, q, r, s, 1).

Also there are oo1 elements with the same (x, y, z) satisfying (10). Hence for

all points we derive a configuration of oo7 curvature elements. These must, of

course, satisfy a single partial differential equation of the second order. Obvi-

ously, we obtain this equation by forming the first partial derivatives of (23)

with respect to tx and t2, and then eliminating these parameters.
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It should be said that the facts disclosed in the above theorem are easily fore-

seen in simple properties of the null-system in P5.

The theorem states, for surface-element loci in space, facts entirely analogous

to those established by Scheffers for the plane. The osculating parabolic bands

belong also to a second system of differential equations obtained from the con-

jugate equation by the transformation (25).

The theorem given is stated without great difficulty in a form invariant

within the group G2X of all contact-transformations under which the system of

parabolic bands remains invariant. The oo3 points or planes of space transform

into a system cr of oo3 vertical paraboloids each of which has a parabolic band

in common with a fixed vertical paraboloid. Each element of space determines

a o--paraboloid to which it belongs.    Then a two parameter group

x = tb(x,y,z,p, q,tx,t2), ...,        q= Q(x,y,z,p, q, tx,tf),

exists such that each element is displaced upon the corresponding <r-paraboloid.

This transformation turns any differential equation

f(x, y, *, p, ?) = o
into

F(x, y, z,p, q; tx, t2) = 0.

The point now is this. If the conjugate element of (x, y, z, p, q) in f= 0 ia

(as', y, z, p, q) and the corresponding paraboloids are tr and tr, then the conju-

gate element otx,y,z,p,qin F =0 for every tx,t2 will lie upon tr'.

§ 7.   Geometry of Osculating Cubic Fands.

We now turn our attention to the second type of bands described in § 2. The

transformation of Lie used in the previous section is here replaced by the

following :

(1) x = ^, y-f?, z = Z,        p=Y\,        q=Y\,
1X X 2

by which we pass from ordinary space to space of five dimensions B5. Moreover

we verify immediately,

(2) dz -pdx - qdy = dZ + XxdYx - YxdXx + X2dY2 - Y2dX2,

and the null-system of § 4 bears the same relation as before to the geometry of

cubic bands.    We verify easily that the null-line in Bs.

(3) Xx=X°x + Xxt, X2=Xl + X2l,   Yx=Y\ + uxt,  Y2 = Y% + pf, Z=Z°+vt,

wherein

v + pxXx-\Yx + p2X2-\Y2 = 0,

gives in B3 a cubic band.    For, substituting in (1), we obtain for the equations
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of the band corresponding to (3),

x = x° + ^-^4

321

y = y° +
(\-"2y°)t

(4) Z = Z0 + [(X1-Mia;»)V^,-(-(X2-M2y0)V?]<,        p=p»+pxt(2jff+pxt),

q = q°+u2t(2^+p2t),

in which the signs of the radicals are unambiguous. Then clearly, the point

locus is a cubic which passes through the points at infinity on the axes of x, y

and z. Call these points for convenience A, B and C, respectively. The plane

locus is the envelope of

(5) Z-z = p(X-x) + q(Y-y),

in which x, y, z, p, q have the values in (4). The result of this substitution

may be written

(u\X+ p\Y -\xpx-\2p2)t2 + 2{px^[f(X - 7f) + p2^"(Y-f)]t

-Z + zO+p°(X-x0) + q'>(Y-yO)=0.

The envelope of (6) is a quadric cone. The band (4) has therefore the charac-

teristic described in § 4. The vertex of this cone must lie upon the point-locus,

the cubic. It is readily verified that the value of the parameter t which deter-

mines the vertex is

(7)
l = VjyiToK - Mi*0)^ + (\-n2y")"2

pxp2v

The vertex lies at the initial point (a;0, y°, z") when

(8) (\x-pxx")ux + (X2-p2f)p2 = 0.

The cubic band is now the one referred to at the close of § 4.

Pass next to the consideration of what will correspond in B3 to the general

null-plane in P6,

(9) Xx = aYx + bY2+c,        X2 = bYx + dY2 + e,        Z=-cYx-eY2+f.

Eliminating  Yx and  Y2 from (9) and the first three equations of (1) we

obtain as the corresponding surface in B3

a — x        b c

(10) 6        d-y       e     =0.

—c        —e     f—z

This is the equation of a cubic surface with nodes at the fixed points A, B
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and C.    Furthermore, it is easily seen that a fourth node exists at the point

(a — bc/e, d— be/c, f+ ce/b).

To the special null-plane

(11) Fx = aYx,        X2 = bY2,        Z=c

correspond all the elements of the point (a, 6, c).

Two cases of null-planes not representable in the form (9) are

(12) F1=aF2 + 6,        X2 = cY2-aXx + e,        Z= - eY2 +bXx +h,

to which will correspond in B3 a quadric cone through the fixed points A, B

and C; and

(13) F1 = 6,        Y2 = c,        Z=bXx + cX2 + d,

which gives in B3 the plane z = b2x + c2y + d.

It may be remarked that (12) is the same as (4), § 6, if axb2 = a\, a case to

which attention was called at the time, while (13) is also a special case of the

same equations. That is, the null-planes in Bs which under Lie's transforma-

tion gave parabolic cylinders now go over into quadric cones. Further, the

null-planes (13) in 7?5 give planes in B3 under both transformations.

To the general plane not a null-plane in B5 will correspond in F3 an assemblage

of oo2 elements whose points lie upon a cubic surface having A, B and Cas

nodes, while the planes envelop a cubic with four nodes, of which the fixed points

A, B and C constitute three. This difference in character of plane-locus and

point-locus is noteworthy and is readily accounted for by considerations in B5

which may be omitted here. The three-nodal cubic referred to is entirely

general.

We may develop as in the previous section the analysis for the theory of

cubic bands which osculate the characteristic bands of a given partial differ-

ential equation of the first order. To avoid the details, we limit ourselves to

the statement of results.

The equations of the cubic band which osculates the characteristic band of

f(x,y,z, p, q) = 0
at (x,y,z, p, q) ave

,_       , Jpfrl_ , Hf¿
X-X+P-{fx + Pfz)t'        y-y + q-(fv + qW

vrS') z' = z + 2(pfp + qfi)t, p'=lP-(f* + Pm\

i   iq-(fy + qfz)ty
2-~ q
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The osculating cubic bands of the equation

(14) f(x,y,z, p,q) =0

belong also to a second equation obtained by elimination of x, y, z, p, q from

(14) and

o   fp - o   ft - 2Pfp + 2?/3
x—2pf,        y =y—2qf,        z =z +

Jx Jy iz

(15)
,1/1 ,    1/

p=--fi>     q =p/V     *   ?/T

The conjugate element (a;', y, z, p', q') is given by (13') if t = 1 -i-f.

Finally, we may state in a manner analogous to the \heorem at the cIopt of

the preceding section the

Theorem.    Let each surface element (P, E) (x, y, z,p, q) of the locus of

(16) f(x,y,z,p,q) =0

be turned about its point in such a manner that it becomes the element (P, F')

(x, y, z, pe~ai, oe_2¡2), where tx and t2 are arbitrary constants. Then the trans-

formed elements satisfy the equation

f(x,y,z,pe2t\qe2t>) = 0,

and the osculating cubic bands of (P, E') for every tx and t2 pass through a

second common point given by the first three equations of (15).

Again, let each element (P, E) be moved in its own plane in such a manner

that the transformed element (P', E) is

(x+ 0-,/Vp, y + er2/ >iq, z+ Vpo-j + V?o-,, p, q);

then the new elements satisfy the equation

f(x — ax¡-y¡p,y — a2/^q, z — Vpo-, — tjqa2, p,q) = 0.

Furthermore, the osculating cubic bands of (P', E) for every ax and er2 will

touch a second plane, namely the plane of the element x, y, z, p', q given by (15).

The statement for cubic bands of the results which correspond to other

theorems in the preceding section may be omitted here.

We may regard cubic bands, projectively at least, as space analogues of

circles in the plane. For the circle, as a line-element locus, is determined

uniquely by two fixed points (the circular points) and two given united elements,

while, as we have seen, a cubic band is determined without ambiguity if we

postulate that it shall pass through three fixed points and contain two given

united surface-elements.
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§ 8.  Concluding Theorems.

Comparison of the transformations of § § 6 and 7 gives in space the contact-

transformation

/-IN 2X' V ' 1     '    ' 1    '   ' 1      '2 1    '2(i) x = y    y = Y'    z = z -\px -\qy-i   p = \p->   q = lq >

which has the cardinal property of transforming parabolic into cubic bands.

Further properties of this transformation are readily derived from the preceding

discussion.

Planes transform into planes.

Parabolic cylinders passing through the extremity of the »-axis at infinity

transform into quadric cones having three fixed points A, B, C in common.

These points lie at infinity on the axes. Also, straight lines transform into

quadric cones of this family.

Vertical paraboloids and parabolas go over into four nodal cubics, three of

the nodes being A, B, C. In special cases, the singularities may change to

two nodes and one binode, all at A , B and C.

Elimination of p, q, p', q from (1) leads to the aequatio-directrix

(2) xyz — z'xy + y x + x"y = 0,

from which it appears that points (a;', y, z) are transformed into cubics for

which A and B are nodes and C a binode, while points (x, y, z) go over into

vertical paraboloids for which the planes x'= 0 and y'=0 are principal planes.

We may draw one conclusion from the details outlined above, ^rom the

double system of generators on a paraboloid we infer at once that for a four-

nodal cubic there exists a double system of quadric cones each of which will pass

through three of the nodes and touch the cubic along a skew cubic. Taking

the four nodes by threes in the four possible ways, we obtain eight systems of

enveloping quadric cones.

Sheffield Scientific School,

February, 1910.


