NOTE ON FERMAT’S LAST THEOREM*

BY

H. S. VANDIVER

1. If \(x, y\) and \(z\) are integers prime to each other, and

\[x^p + y^p + z^p = 0, \]

where \(p\) is a prime, and

\[q(r) = \frac{r^{p-1} - 1}{p}, \]

Furtwängler † has shown that

\[q(r) \equiv 0 \pmod{p} \]

for each factor \(r\) of \(x\), in case \(x \equiv 0 \pmod{p}\), and for each factor \(r\) of \(x^2 - y^2\), in case \(x^2 - y^2\) is prime to \(p\).

By applying this theorem, Furtwängler deduces the criterion of Wieferich

\[q(2) \equiv 0 \pmod{p} \]

and the criterion of Mirimanoff \(q(3) \equiv 0 \pmod{p}\) for the solution of (1) in integers prime to \(p\). I shall here extend these results and show that in addition we have, provided that \(q(2) \not\equiv 0 \pmod{p^3}\), the criteria \(q(5) \equiv 0 \pmod{p}\) for \(p \equiv 1 \pmod{3}\) and \(q(5) \equiv q(7) \equiv 0 \pmod{p}\) for \(p \equiv 2 \pmod{3}\).

2. Assume that \(x, y\) and \(z\) are prime to each other and to \(p\) and that \(p > 5\).

If one of the integers \(x, y, z\) is divisible by 5, then \(q(5) \equiv 0 \pmod{p}\) by Furtwängler’s theorem. If none of them is so divisible, then, modulo 5, \(x^p, y^p, z^p\) have the residues \(\pm 2, \pm 2, \pm 1\) or \(\pm 1, \pm 1, \mp 2\) in some order. We may therefore take \(x^p \equiv y^p \pmod{5}\). Then \(x \equiv y \pmod{5}\), since every integer has a unique cube root modulo 5. Thus 5 is a divisor of \(x^2 - y^2\). Hence (§ 1) \(q(5) \equiv 0 \pmod{p}\), unless \(x^2 \equiv y^2 \pmod{p}\), i.e., unless \(x \equiv y \pmod{p}\), since \(x \equiv -y\) and \(x + y + z \equiv 0 \pmod{p}\) would imply \(z \equiv 0 \pmod{p}\), contrary to hypothesis. Using \(x + y + z \equiv 0\), we may state the result:

If (1) is satisfied by integers prime to \(p\), then the congruence

\[q(5) (t - 1) (t + 2) (t + 1/2) \equiv 0 \pmod{p} \]

is satisfied by each of the following values of \(t\):

\[\frac{x}{y}, \frac{y}{x}, \frac{x}{z}, \frac{z}{x}, \frac{y}{z}, \frac{z}{y} \]

* Presented to the Society, February 28, 1914.
3. From (1) we have
\[\frac{x^p + y^p}{x + y} = v^p, \]
when \(v \) is an integer, since the quotient is relatively prime to \(x + y \) and hence is a \(p \)th power. Since \(v \) is a factor of \(z \), it is not divisible by \(p \), and is of the form \(1 + kp \), since the fraction is congruent to \(-z^p / (-z) \) modulo \(p \). Furthermore,
\[(1 + kp)^{p-1} \equiv 1 \pmod{p^3} \]
by Furtwängler's theorem. Multiply the members by \(1 + kp \) and apply \((1 + kp)^p \equiv 1 \pmod{p^3} \). Hence \(k \equiv 0 \pmod{p} \), and \(v^p \equiv 1 \pmod{p^3} \). Hence
\[x^p + y^p \equiv x + y, \]
(4)
\[x^p + x^p \equiv x + z, \pmod{p^3}, \]
\[y^p + z^p \equiv y + z. \]
(5)
\[x^p \equiv x, \quad y^p \equiv y, \quad z^p \equiv z \pmod{p^3}. \]
Hence by (1),
\[x + y + z \equiv 0 \pmod{p^3}. \]

4. Suppose that \(y = x + p\mu \). Substituting in the first relation (4), we have
\[x^p + (x + p\mu)^p \equiv 2x + p\mu \pmod{p^3}, \]
\[2x^p + p^2 \mu x^{p-1} \equiv 2x + p\mu \pmod{p^3}. \]
Hence, by (5),
\[p\mu (px^{p-1} - 1) \equiv 0 \pmod{p^3}, \quad \mu \equiv 0 \pmod{p^2}. \]
We may therefore set \(y = x + p^3 \mu \). Then, from (6), \(z = -2x + p^2 \nu \). Hence, from (1),
\[x^p + (x + p^3 \mu)^p + (-2x + p^2 \nu)^p = 0, \]
\[2x^p - 2p x^p \equiv 0 \pmod{p^4}, \]
\[q(2) \equiv 0 \pmod{p^3}. \]

5. Now consider the criteria given by Mirimanoff* for the solution of (1). He showed that if (1) is satisfied by integers prime to \(p \), then the ratios (3) satisfy
\[F(t) = \prod_{i=1}^{m-1} (t + \alpha^i) \sum_{i=1}^{m-1} \frac{R_i}{t + \alpha^i} \equiv 0 \pmod{p} \]
when \(m = 2, 3, \ldots, p - 1 \) and
\[R_i = \frac{\varphi_p(-\alpha^i)}{(1 - \alpha^i)^{p-1}}, \quad \alpha = e^{2x \sqrt{-1}/m}, \]

\[\varphi_i(t) = t - 2^{i-1} t^2 + 3^{i-1} t^3 - \cdots - (p - 1)^{i-1} p^{i-1}. \]

He also showed that

\[F(-1) \equiv (-1)^m q(m) \pmod{p}. \]

Let \(m = 7 \) in (7). Assume \(p > 7 \). The resulting congruence is of degree 5 in \(t \). The ratios (3) have 6 incongruent values unless one of them is a root of

\[(t - 1) (t + 2) (t + 1/2) \equiv 0 \text{ or } t^2 + t + 1 \equiv 0 \pmod{p}. \]

If \(p \equiv 2 \pmod{3} \), the latter is not possible for \(t \) rational. Hence \(t \equiv 1, -2 \) or \(-1/2\) and therefore, by § 4, \(q(2) \equiv 0 \pmod{p^3} \) unless (7) is an identity. In the latter case we may set \(t \equiv -1 \) and obtain \(q(7) \equiv 0 \pmod{p} \) by reason of (8). Hence the criteria:

If (1) is satisfied by integers prime to \(p \), then either

\[q(2) \equiv 0 \pmod{p^3}, \quad q(3) \equiv 0 \pmod{p}, \]

or else

\[q(2) \equiv q(3) \equiv q(5) \equiv 0 \pmod{p}; \]

and if \(p \equiv 2 \pmod{3} \),

\[q(7) \equiv 0 \pmod{p}. \]

6. There are no primes \(p \) at present known such that \(q(2) \equiv 0 \pmod{p^3} \).

Meissner* observes that \(q(2) \equiv 0 \pmod{1,093} \), but finds \(q(2) \not\equiv 0 \pmod{1,093^2} \). He also states that \(q(2) \not\equiv 0 \pmod{p} \) for every \(p < 2,000 \) excepting 1,093.

7. If any one of the forms

\[2^\alpha 3^\beta \pm 1, \quad 2^\alpha \pm 3^\beta, \]

where \(\alpha \) and \(\beta \) are positive integers or zero, is divisible by a prime \(p \) but is not divisible by \(p^2 \), then \(p \) is excluded as an exponent in (1), if \(x, y \) and \(z \) are prime to each other and to \(p \).† For, if \(p \) is admissible in (1), then \(q(2) \equiv q(3) \equiv 0 \pmod{p} \), and

\[(2^\alpha)^{p-1} \equiv (3^\beta)^{p-1} \equiv 1, \quad (2^\alpha 3^\beta)^{p-1} \equiv 1 \pmod{p^2}. \]

But if \(2^\alpha 3^\beta \pm 1 \equiv 0 \pmod{p} \) but \(\not\equiv 0 \pmod{p^2} \), then

\[(2^\alpha 3^\beta)^{p-1} \not\equiv 1 \pmod{p^2}, \quad (2^\alpha)^{p-1} \not\equiv (3^\beta)^{p-1} \pmod{p^2}, \]

which contradict (9). As an example, the integer \(p = 2^{61} - 1 \) is known to be prime, hence it is excluded as an exponent in (1).

*Sitzungsberichte der Preuss. Akademie der Wissenschaften, 1913, no. 35, p. 663.