Contents of Volume 15, Number 4
HTML articles powered by AMS MathViewer
View front and back matter from the print issue
- The conic as a space element
- Roger A. Johnson
- Trans. Amer. Math. Soc. 15 (1914), 335-368
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500984-5
- The Weierstrass $F$-function for problems of the calculus of variations in space
- Gilbert Ames Bliss
- Trans. Amer. Math. Soc. 15 (1914), 369-378
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500985-7
- The subgroups of the quaternary abelian linear group
- Howard H. Mitchell
- Trans. Amer. Math. Soc. 15 (1914), 379-396
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500986-9
- Transformations of conjugate systems with equal point invariants
- Luther Pfahler Eisenhart
- Trans. Amer. Math. Soc. 15 (1914), 397-430
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500987-0
- Proof of the finiteness of the modular covariants of a system of binary forms and cogredient points
- Forbes Bagley Wiley
- Trans. Amer. Math. Soc. 15 (1914), 431-438
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500988-2
- On the degree of convergence of Sturm-Liouville series
- Dunham Jackson
- Trans. Amer. Math. Soc. 15 (1914), 439-466
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500989-4
- Singular integral equations of the Volterra type
- Clyde E. Love
- Trans. Amer. Math. Soc. 15 (1914), 467-476
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500990-0
- On the reduction of integro-differential equations
- Griffith C. Evans
- Trans. Amer. Math. Soc. 15 (1914), 477-496
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500991-2
- Invariants in the theory of numbers
- L. E. Dickson
- Trans. Amer. Math. Soc. 15 (1914), 497-503
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500992-4
- Addenda and errata: “Proper multiple integrals over iterable fields” [Trans. Amer. Math. Soc. 11 (1910), no. 1, 25–36; 1500854]
- Ernest B. Lytle
- Trans. Amer. Math. Soc. 15 (1914), 504-505
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500492-1
- Errata: “Decomposition of an $n$-space by a polyhedron” [Trans. Amer. Math. Soc. 14 (1913), no. 1, 65–72; 1500936]
- Oswald Veblen
- Trans. Amer. Math. Soc. 15 (1914), 506
- DOI: https://doi.org/10.1090/S0002-9947-1914-1500493-3